A218165 a(n) is the smallest positive integer k such that k^128 + 1 == 0 mod p, where p is the n-th prime of the form 1 + 256*b (see A208178).
3, 7, 17, 198, 71, 88, 29, 50, 9, 225, 26, 141, 10, 79, 36, 89, 281, 108, 43, 233, 156, 412, 430, 296, 79, 20, 76, 178, 80, 54, 1018, 82, 89, 403, 85, 208, 914, 373, 1226, 62, 192, 68, 390, 1055, 1500, 137, 1018, 141, 95, 54, 160, 52, 11, 754, 674, 182, 517
Offset: 1
Keywords
Examples
a(1) = 3 because 3^128+1 = 2 * 257 * 275201 * 138424618868737 * 3913786281514524929 * 153849834 853910661121 with A208178(1) = 257.
Crossrefs
Cf. A208178.
Programs
-
Mathematica
aa = {}; Do[p = Prime[n]; If[Mod[p, 256] == 1, k = 1; While[ ! Mod[k^128 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 5000}]; aa
Comments