cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076339 Primes of the form 512*k+1.

Original entry on oeis.org

7681, 10753, 11777, 12289, 13313, 15361, 17921, 18433, 19457, 23041, 25601, 26113, 32257, 36353, 37889, 39937, 40961, 45569, 50177, 51713, 58369, 59393, 61441, 64513, 65537, 67073, 70657, 76289, 76801, 79873, 80897, 81409, 83969
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2002

Keywords

Comments

Odd primes p such that -1 is a 256th power mod p. - Eric M. Schmidt, Mar 27 2014

Examples

			A076338(15) = 512*15+1 = a(1) = 7681 = A000040(974);
A076338(21) = 512*21+1 = a(2) = 10753 = A000040(1311);
a(38) - a(37) = 95233 - 87553 = 7680 = a(1)-1.
		

References

  • M. Kraitchik, Theorie des Nombres, Gauthier-Villars (I. 1922, II. 1929).
  • M. Kraitchik, Recherches sur la theorie des nombres, Gauthier-Villars (1924).

Crossrefs

Programs

  • Haskell
    a076339 n = a076339_list !! (n-1)
    a076339_list = filter ((== 1) . a010051) [1,513..]
    -- Reinhard Zumkeller, Mar 06 2012
    
  • Mathematica
    Select[512 Range[164] + 1, PrimeQ] (* Bruno Berselli, Feb 23 2012 *)
  • PARI
    forprimestep(p=7681,83969,512, print1(p", ")) \\ Charles R Greathouse IV, Nov 01 2022

Formula

a(n) ~ 256n log n. - Charles R Greathouse IV, Nov 01 2022

A158231 a(n) = 256*n + 1.

Original entry on oeis.org

257, 513, 769, 1025, 1281, 1537, 1793, 2049, 2305, 2561, 2817, 3073, 3329, 3585, 3841, 4097, 4353, 4609, 4865, 5121, 5377, 5633, 5889, 6145, 6401, 6657, 6913, 7169, 7425, 7681, 7937, 8193, 8449, 8705, 8961, 9217, 9473, 9729, 9985, 10241, 10497
Offset: 1

Views

Author

Vincenzo Librandi, Mar 14 2009

Keywords

Comments

The identity (256*n + 1)^2 - (256*n^2 + 2*n)*16^2 = 1 can be written as a(n)^2 - A158230(n)*16^2 = 1.
Also the identity (512*n + 1)^2 - (256*n^2 + n)*32^2 = 1 can be written as A076338(n)^2 - (n*a(n))*32^2 = 1. - Vincenzo Librandi, Feb 23 2012

Crossrefs

Programs

  • Magma
    I:=[257, 513]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
    
  • Maple
    A158231:=n->256*n + 1; seq(A158231(n), n=1..50); # Wesley Ivan Hurt, Jan 24 2014
  • Mathematica
    256Range[50]+1 (* or *) LinearRecurrence[{2,-1},{257,513},50] (* Harvey P. Dale, Nov 21 2011 *)
  • PARI
    a(n) = 256*n + 1

Formula

a(n) = 2*a(n-1) - a(n-2); a(1)=257, a(2)=513. - Harvey P. Dale, Nov 21 2011
G.f.: x*(257-x)/(x-1)^2. - Harvey P. Dale, Nov 21 2011

A031710 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 32.

Original entry on oeis.org

257, 1026, 2307, 4100, 6405, 9222, 12551, 16392, 20745, 25610, 30987, 36876, 43277, 50190, 57615, 65552, 74001, 82962, 92435, 102420, 112917, 123926, 135447, 147480, 160025, 173082, 186651, 200732, 215325, 230430, 246047, 262176, 278817, 295970
Offset: 1

Views

Author

Keywords

Comments

The continued fraction expansion of sqrt((k*m)^2+t*m) for m >= 1 where t divides 2*k has the form [k*m, 2*k/t, 2*k*m, 2*k/t, 2*k*m, ...]. Thus numbers of the form (16*m)^2 + m for m >= 1 are in the sequence. Are there any others? - Chai Wah Wu, Jun 18 2016
The term 297058 is not of the form (16*m)^2 + m. - Chai Wah Wu, Jun 19 2016

Crossrefs

Cf. A076338.

Programs

  • Mathematica
    Select[Range[10^4], !IntegerQ[Sqrt[#]] && Min[ContinuedFraction[Sqrt[#]][[2]]] == 32 &] (* Vincenzo Librandi, Jun 20 2016 *)

Extensions

Edited by Charles R Greathouse IV, Aug 09 2010
Incorrect formula and comment removed by Vincenzo Librandi, Jan 09 2012
a(34) from Charles R Greathouse IV, Aug 02 2017
Showing 1-3 of 3 results.