cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076467 Perfect powers m^k where m is a positive integer and k >= 3.

Original entry on oeis.org

1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 512, 625, 729, 1000, 1024, 1296, 1331, 1728, 2048, 2187, 2197, 2401, 2744, 3125, 3375, 4096, 4913, 5832, 6561, 6859, 7776, 8000, 8192, 9261, 10000, 10648, 12167, 13824, 14641, 15625, 16384, 16807
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2002

Keywords

Comments

If p|n with p prime then p^3|n.

Crossrefs

Subsequence of A036966.

Programs

  • Haskell
    a076467 n = a076467_list !! (n-1)
    a076467_list = 1 : filter ((> 2) . foldl1 gcd . a124010_row) [2..]
    -- Reinhard Zumkeller, Apr 13 2012
    
  • Haskell
    import qualified Data.Set as Set (null)
    import Data.Set (empty, insert, deleteFindMin)
    a076467 n = a076467_list !! (n-1)
    a076467_list = 1 : f [2..] empty where
       f xs'@(x:xs) s | Set.null s || m > x ^ 3 = f xs $ insert (x ^ 3, x) s
                      | m == x ^ 3  = f xs s
                      | otherwise = m : f xs' (insert (m * b, b) s')
                      where ((m, b), s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 18 2013
    
  • Maple
    N:= 10^5: # to get all terms <= N
    S:= {1, seq(seq(m^k, m = 2 .. floor(N^(1/k))),k=3..ilog2(N))}:
    sort(convert(S,list)); # Robert Israel, Sep 30 2015
  • Mathematica
    a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 2, a = Append[a, n]; Print[n]], {n, 2, 17575}]; a
    (* Second program: *)
    n = 10^5; Join[{1}, Table[m^k, {k, 3, Floor[Log[2, n]]}, {m, 2, Floor[n^(1/k)]}] // Flatten // Union] (* Jean-François Alcover, Feb 13 2018, after Robert Israel *)
  • PARI
    is(n)=ispower(n)>2||n==1 \\ Charles R Greathouse IV, Sep 03 2015, edited for n=1 by M. F. Hasler, May 26 2018
    
  • PARI
    A076467(lim)={my(L=List(1),lim2=logint(lim,2),m,k);for(k=3,lim2, for(m=2,sqrtnint(lim,k),listput(L, m^k);));listsort(L,1);L}
    b076467(lim)={my(L=A076467(lim)); for(i=1,#L,print(i ," ",L[i]));} \\ Anatoly E. Voevudko, Sep 29 2015, edited by M. F. Hasler, May 25 2018
    
  • PARI
    A076467_vec(LIM,S=List(1))={for(x=2,sqrtnint(LIM,3),for(k=3, logint(LIM, x), listput(S, x^k))); Set(S)} \\ M. F. Hasler, May 25 2018
    
  • Python
    from sympy import mobius, integer_nthroot
    def A076467(n):
        def f(x): return int(n-1+x-integer_nthroot(x,4)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]-2) for k in range(3,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

For n > 1: GCD(exponents in prime factorization of a(n)) > 2, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
Sum_{n>=1} 1/a(n) = 2 - zeta(2) + Sum_{k>=2} mu(k)*(2 - zeta(k) - zeta(2*k)) = 1.3300056287... - Amiram Eldar, Jul 02 2022

Extensions

Edited by Robert Israel, Sep 30 2015