cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A378164 Smaller of consecutive terms b < c of A076467 such that the quality q=log(rad(c))/log(rad((c-b)*b*c)) of the abc-triple c-b,b,c with gcd(c-b,b,c)=1 sets a new record.

Original entry on oeis.org

1, 81, 1296, 2187, 1419857
Offset: 1

Views

Author

Hugo Pfoertner, Nov 18 2024

Keywords

Comments

If it exists, a(6)>5*10^27.

Examples

			           Pairs b,c of consecutive
           terms of A076467
  A378165
    c-b        b        c     Quality = log(rad(c))/log(rad((c-b)*b*c))
      7,       1,       8,    0.262649535...
     44,      81,     125,    0.277532712...
     35,    1296,    1331,    0.309605475...
     10,    2187,    2197,    0.429917243...
  23040, 1419857, 1442897,    0.431260235...
		

Crossrefs

A378165 gives the corresponding values of c-b.

Programs

  • PARI
    \\ Uses M. F. Hasler's A076467_vec from A076467
    a378164_5(upto) = {my(W=A076467_vec(upto), qw=0); for(k=2, #W, my(d=W[k]-W[k-1]); if(gcd([d,W[k],W[k-1]])==1, my(C=factor(W[k])[,1], B=factor(W[k-1])[,1], A=factor(d)[,1], P=vecprod(setunion(setunion(Set(B),Set(C)),Set(A))), q=log(vecprod(C))/log(P)); if(q>qw, print([d,W[k-1],W[k],q]); qw=q)))};
    a378164_5(10^16)

A378165 Differences between adjacent terms of A076467 that correspond to the locations of abc-quality records of A378164.

Original entry on oeis.org

7, 44, 35, 10, 23440
Offset: 1

Views

Author

Hugo Pfoertner, Nov 19 2024

Keywords

Comments

See A378164 for more information and examples.

Crossrefs

A378168 a(n) is the number of squares <= 10^n that are not higher powers, i.e., terms of A076467.

Original entry on oeis.org

2, 6, 24, 87, 292, 959, 3089, 9875, 31410, 99633, 315589, 998889, 3160340, 9996605, 31616816, 99989509, 316209268, 999967330, 3162219896, 9999897769, 31622595517, 99999679010, 316227196708, 999998989804, 3162275866962, 9999996815862, 31622770946248, 99999989953079
Offset: 1

Views

Author

Hugo Pfoertner, Nov 20 2024

Keywords

Examples

			a(1) = 2: squares <= 10 are 2^2 and 3^2;
a(2) = 6: 2 squares <= 10 and 5^2, 6^2, 7^2, 10^2, but not 4^2=2^4, 8^2=2^6, and 9^2=3^4;
a(3) = 24: 6 squares <= 100 and all squares between 11^2 and 31^2, except for 16^2=2^8, 25^2=5^4, and 27^2=3^6.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[k]*Floor[10^(n/(2k))-1],{k,Floor[Log2[10^n]-1]}],{n,28}] (* James C. McMahon, Nov 21 2024 *)
  • Python
    from math import gcd
    from sympy import integer_nthroot, mobius
    def A378168(n): return sum(mobius(k)*(integer_nthroot(10**(n//(a:=gcd(n,b:=k<<1))), b//a)[0]-1) for k in range(1, (10**n).bit_length()-1)) # Chai Wah Wu, Nov 20 2024

Formula

a(n) = Sum_{k=1..floor(log_2(10^n)-1)} mu(k)*floor(10^(n/(2k))-1). - Chai Wah Wu, Nov 20 2024

Extensions

a(20) onwards from Chai Wah Wu, Nov 20 2024

A377933 First differences of consecutive perfect powers m^k with k>=3 (A076467).

Original entry on oeis.org

7, 8, 11, 5, 32, 17, 44, 3, 88, 27, 13, 87, 169, 113, 104, 271, 24, 272, 35, 397, 320, 139, 10, 204, 343, 381, 250, 721, 817, 919, 729, 298, 917, 224, 192, 1069, 739, 648, 1519, 1657, 817, 984, 759, 423, 769, 2107, 1053, 1216, 2437, 2611, 1561, 1230, 2977, 3169, 2479, 888
Offset: 1

Views

Author

Hugo Pfoertner, Nov 24 2024

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N of A076467
    S:= sort(convert({1, seq(seq(m^k, m = 2 .. floor(N^(1/k))), k=3..ilog2(N))},list)):
    S[2..-1]-S[1..-2]; # Robert Israel, Nov 24 2024
  • PARI
    lista(nn) = my(S=List(1)); for(x=2, sqrtnint(nn, 3), for(k=3, logint(nn, x), listput(S, x^k))); my(v=Set(S)); vector(#v-1, k, v[k+1]-v[k]); \\ Michel Marcus, Nov 24 2024

Formula

a(n) = A076467(n+1) - A076467(n).

A377934 a(n) is the number of perfect powers m^k with k>=3 (A076467) <= 10^n.

Original entry on oeis.org

1, 2, 7, 17, 38, 75, 152, 306, 616, 1260, 2598, 5401, 11307, 23798, 50316, 106776, 227236, 484737, 1036002, 2217529, 4752349, 10194727, 21887147, 47020054, 101065880, 217325603, 467484989, 1005881993, 2164843035, 4660016778, 10032642455, 21602193212, 46518438071
Offset: 0

Views

Author

Hugo Pfoertner, Nov 24 2024

Keywords

Examples

			a(0) = 1: 1^k with any k>2 (<= 10^0);
a(1) = 2: 1 and 2^3 (<=10^1);
a(2) = 7: 2 powers <= 10 and 16, 27, 32, 64, 81 (<=10^2).
		

Crossrefs

Programs

  • Python
    from math import gcd
    from sympy import integer_nthroot, mobius
    def A377934(n): return int(integer_nthroot(10**(n//(a:=gcd(n,4))),4//a)[0]-sum(mobius(k)*(integer_nthroot(10**(n//(b:=gcd(n,k))),k//b)[0]+integer_nthroot(10**(n//(c:=gcd(n,d:=k<<1))),d//c)[0]-2) for k in range(3,(10**n).bit_length()))) # Chai Wah Wu, Nov 24 2024

Formula

a(n) = 10^n - Sum_{k=1..floor(log2(10^n))} mu(k)*(floor(10^(n/k))+floor(10^(n/(2k)))-2). - Chai Wah Wu, Nov 24 2024

Extensions

a(28) onwards from Chai Wah Wu, Nov 24 2024

A378166 Terms c = A076467(k) such that the distinct prime factors of b = A076467(k-1) and of c-b are subsets of the prime factors of c, i.e., rad(c)/rad((c-b)*b*c) = 1.

Original entry on oeis.org

16, 64, 2744, 474552, 157529610000, 407165596771032, 1491025241529616, 173903694695292024, 661905356066769705912, 14918256451377811247508792, 19801061641727872277815512, 2718924063971620383558231552
Offset: 1

Views

Author

Hugo Pfoertner, Nov 20 2024

Keywords

Comments

a(13) > 5*10^27.

Examples

			                      Pairs b,c of consecutive terms of A076467
          A378167
              c-b                      b               c = a(n)
                8,                     8,                    16,
               32,                    32,                    64,
              343,                  2401,                  2744,
            17576,                456976,                474552,
         65610000,          157464000000,          157529610000,
      11329982936,       407154266788096,       407165596771032,
      26102469128,      1490999139060488,      1491025241529616,
     315404039943,    173903379291252081,    173903694695292024,
  152838610998696, 661905203228158707216, 661905356066769705912.
		

Crossrefs

A378167 gives the corresponding values of c-b.

Programs

  • PARI
    \\ Uses M. F. Hasler's A076467_vec from A076467
    rad(x) = vecprod(factor(x)[,1]);
    a378166_7(upto) = {my(W=A076467_vec(upto)); for(k=2, #W, my(d=W[k]-W[k-1], q=rad(W[k])/rad(W[k]*W[k-1]*d)); if(q==1, print([d, W[k-1], W[k]])))};
    \\ Alternative program not using rad, more efficient
    a378166_7(upto) = {my(W=A076467_vec(upto)); for(k=2, #W, my(C=Set(factor(W[k])[,1]), d=W[k]-W[k-1]); if(#setminus(Set(factor(d)[,1]), C)>0, , if(#setminus(Set(factor(W[k-1])[,1]), C)==0, print([d, W[k-1], W[k]]))))};
    a378166_7(10^18)

A378167 Differences between adjacent terms of A076467 that correspond to the locations described by A378166.

Original entry on oeis.org

8, 32, 343, 17576, 65610000, 11329982936, 26102469128, 315404039943, 152838610998696, 7327416190396311, 146668341275463896, 1097750613982270976
Offset: 1

Views

Author

Hugo Pfoertner, Nov 20 2024

Keywords

Comments

See A378166 for more information and examples.

Crossrefs

A378287 Numbers not of the form m^k for some k>=3. Complement of A076467.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Chai Wah Wu, Nov 21 2024

Keywords

Comments

Differs from A362147 at a(419).

Crossrefs

Programs

  • Python
    from sympy import integer_nthroot, mobius
    def A378287(n):
        def f(x): return int(n+integer_nthroot(x,4)[0]-sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]-2) for k in range(3,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m

A153158 a(n) = A007916(n)^2.

Original entry on oeis.org

4, 9, 25, 36, 49, 100, 121, 144, 169, 196, 225, 289, 324, 361, 400, 441, 484, 529, 576, 676, 784, 841, 900, 961, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481
Offset: 1

Views

Author

Keywords

Comments

A378168(n) is the number of terms <= 10^n. - Chai Wah Wu, Nov 21 2024

Examples

			2^2 = 4, 3^2 = 9, 4^2 = 16 = 2^4 is not in the sequence, 5^2 = 25, 6^2 = 36, ...
		

Crossrefs

Programs

  • Haskell
    a153158 n = a153158_list !! (n-1)
    a153158_list = filter ((== 2) . foldl1 gcd . a124010_row) [2..]
    -- Reinhard Zumkeller, Apr 13 2012
    
  • Maple
    q:= n-> is(igcd(seq(i[2], i=ifactors(n)[2]))=2):
    select(q, [i^2$i=2..60])[];  # Alois P. Heinz, Nov 26 2024
  • Mathematica
    Select[Range[2,100],GCD@@Last/@FactorInteger@#==1&]^2
  • Python
    from sympy import mobius, integer_nthroot
    def A153158(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m**2 # Chai Wah Wu, Aug 13 2024

Formula

GCD(exponents in prime factorization of a(n)) = 2, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
Sum_{n>=1} 1/a(n) = zeta(2) - 1 - Sum_{k>=2} mu(k)*(1 - zeta(2*k)) = 0.5444587396... - Amiram Eldar, Jul 02 2022
Intersection of A000290 and A378287. Squares that are not of the form m^k for some k>=3. - Chai Wah Wu, Nov 21 2024

Extensions

Edited by Ray Chandler, Dec 22 2008

A340700 Lower of a pair of adjacent perfect powers, both with exponents > 2.

Original entry on oeis.org

27, 64, 125, 243, 1000, 1296, 2187, 50625, 59049, 194481, 279841, 456533, 614125, 3111696, 6434856, 22665187, 25411681, 38950081, 62742241, 96059601, 131079601, 418161601, 506250000, 741200625, 796594176, 1249198336, 2136719872, 2217342464, 5554571841, 5802782976
Offset: 1

Views

Author

Hugo Pfoertner, Jan 16 2021

Keywords

Comments

It is conjectured that the intersection of A340700 and A340701 is empty, i.e., that no 3 immediately consecutive perfect powers with all exponents > 2 (A076467) exist. No counterexample < 3.4*10^30 was found.

Examples

			Initial terms of sequences A340700 .. A340706:
a(n) = x^p,
A340701(n) = A340703(n)^A340705(n) = y^q,
A340706(n) = A340701(n) - a(n) = y^q - x^p.
.
  n  a(n)    x ^  p  A340701    y ^  q  A340706 adjacent squares
  1    27 =  3 ^  3,      32 =  2 ^  5,      5  5^2=25, 6^2=36
  2    64 =  2 ^  6,      81 =  3 ^  4,     17  8^2=64, 9^2=81
  3   125 =  5 ^  3,     128 =  2 ^  7,      3  11^2=121, 12^2=144
  4   243 =  3 ^  5,     256 =  2 ^  8,     13  15^2=225, 16^2=256
  5  1000 = 10 ^  3,    1024 =  2 ^ 10,     24  31^2=961, 32^2=1024
  6  1296 =  6 ^  4,    1331 = 11 ^  3,     35  36^2=1296, 37^2=1369
  7  2187 =  3 ^  7,    2197 = 13 ^  3,     10  46^2=2116, 47^2=2209
  8 50625 = 15 ^  4,   50653 = 37 ^  3,     28  225^2=50625, 226^2=51076
  9 59049 =  3 ^ 10,   59319 = 39 ^  3,    270  243^2=59049, 244^2=59536
		

Crossrefs

The corresponding upper members of the pairs are A340701.
Cf. A117934 (excluding pairs where one of the members is a square).

Formula

a(n) = A340702(n)^A340704(n) = A340701(n) - A340706(n).
Showing 1-10 of 34 results. Next