cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378164 Smaller of consecutive terms b < c of A076467 such that the quality q=log(rad(c))/log(rad((c-b)*b*c)) of the abc-triple c-b,b,c with gcd(c-b,b,c)=1 sets a new record.

Original entry on oeis.org

1, 81, 1296, 2187, 1419857
Offset: 1

Views

Author

Hugo Pfoertner, Nov 18 2024

Keywords

Comments

If it exists, a(6)>5*10^27.

Examples

			           Pairs b,c of consecutive
           terms of A076467
  A378165
    c-b        b        c     Quality = log(rad(c))/log(rad((c-b)*b*c))
      7,       1,       8,    0.262649535...
     44,      81,     125,    0.277532712...
     35,    1296,    1331,    0.309605475...
     10,    2187,    2197,    0.429917243...
  23040, 1419857, 1442897,    0.431260235...
		

Crossrefs

A378165 gives the corresponding values of c-b.

Programs

  • PARI
    \\ Uses M. F. Hasler's A076467_vec from A076467
    a378164_5(upto) = {my(W=A076467_vec(upto), qw=0); for(k=2, #W, my(d=W[k]-W[k-1]); if(gcd([d,W[k],W[k-1]])==1, my(C=factor(W[k])[,1], B=factor(W[k-1])[,1], A=factor(d)[,1], P=vecprod(setunion(setunion(Set(B),Set(C)),Set(A))), q=log(vecprod(C))/log(P)); if(q>qw, print([d,W[k-1],W[k],q]); qw=q)))};
    a378164_5(10^16)

A378166 Terms c = A076467(k) such that the distinct prime factors of b = A076467(k-1) and of c-b are subsets of the prime factors of c, i.e., rad(c)/rad((c-b)*b*c) = 1.

Original entry on oeis.org

16, 64, 2744, 474552, 157529610000, 407165596771032, 1491025241529616, 173903694695292024, 661905356066769705912, 14918256451377811247508792, 19801061641727872277815512, 2718924063971620383558231552
Offset: 1

Views

Author

Hugo Pfoertner, Nov 20 2024

Keywords

Comments

a(13) > 5*10^27.

Examples

			                      Pairs b,c of consecutive terms of A076467
          A378167
              c-b                      b               c = a(n)
                8,                     8,                    16,
               32,                    32,                    64,
              343,                  2401,                  2744,
            17576,                456976,                474552,
         65610000,          157464000000,          157529610000,
      11329982936,       407154266788096,       407165596771032,
      26102469128,      1490999139060488,      1491025241529616,
     315404039943,    173903379291252081,    173903694695292024,
  152838610998696, 661905203228158707216, 661905356066769705912.
		

Crossrefs

A378167 gives the corresponding values of c-b.

Programs

  • PARI
    \\ Uses M. F. Hasler's A076467_vec from A076467
    rad(x) = vecprod(factor(x)[,1]);
    a378166_7(upto) = {my(W=A076467_vec(upto)); for(k=2, #W, my(d=W[k]-W[k-1], q=rad(W[k])/rad(W[k]*W[k-1]*d)); if(q==1, print([d, W[k-1], W[k]])))};
    \\ Alternative program not using rad, more efficient
    a378166_7(upto) = {my(W=A076467_vec(upto)); for(k=2, #W, my(C=Set(factor(W[k])[,1]), d=W[k]-W[k-1]); if(#setminus(Set(factor(d)[,1]), C)>0, , if(#setminus(Set(factor(W[k-1])[,1]), C)==0, print([d, W[k-1], W[k]]))))};
    a378166_7(10^18)
Showing 1-2 of 2 results.