A007916 Numbers that are not perfect powers.
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83
Offset: 1
Examples
Example of the power tower factorizations for the first nine positive integers: 1=1, 2=a(1), 3=a(2), 4=a(1)^a(1), 5=a(3), 6=a(4), 7=a(5), 8=a(1)^a(2), 9=a(2)^a(1). - _Gus Wiseman_, Oct 20 2016
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..9875
- Joakim Munkhammar, The Riemann zeta function as a sum of geometric series, The Mathematical Gazette (2020) Vol. 104, Issue 561, 527-530.
- N. J. A. Sloane, Maple programs for A007916, A278028, A278029, A052409, A089723, A277564
- F. Smarandache, Only Problems, Not Solutions!, Xiquan Publ., Phoenix-Chicago, 1993
- Index entries for sequences generated by sieves
Crossrefs
Programs
-
Haskell
a007916 n = a007916_list !! (n-1) a007916_list = filter ((== 1) . foldl1 gcd . a124010_row) [2..] -- Reinhard Zumkeller, Apr 13 2012
-
Magma
[n : n in [2..1000] | not IsPower(n) ];
-
Maple
See link.
-
Mathematica
a = {}; Do[If[Apply[GCD, Transpose[FactorInteger[n]][[2]]] == 1, a = Append[a, n]], {n, 2, 200}]; Select[Range[2,200],GCD@@FactorInteger[#][[All,-1]]===1&] (* Michael De Vlieger, Oct 21 2016. Corrected by Gus Wiseman, Jan 14 2017 *)
-
PARI
is(n)=!ispower(n)&&n>1 \\ Charles R Greathouse IV, Jul 01 2013
-
Python
from sympy import mobius, integer_nthroot def A007916(n): def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 13 2024
Formula
A075802(a(n)) = 0. - Reinhard Zumkeller, Mar 19 2009
Gcd(exponents in prime factorization of a(n)) = 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n. - Charles R Greathouse IV, Jul 01 2013
A052409(a(n)) = 1. - Ridouane Oudra, Nov 23 2024
Extensions
More terms from Henry Bottomley, Sep 12 2000
Edited by Charles R Greathouse IV, Mar 18 2010
Further edited by N. J. A. Sloane, Nov 09 2016
Comments