cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340700 Lower of a pair of adjacent perfect powers, both with exponents > 2.

Original entry on oeis.org

27, 64, 125, 243, 1000, 1296, 2187, 50625, 59049, 194481, 279841, 456533, 614125, 3111696, 6434856, 22665187, 25411681, 38950081, 62742241, 96059601, 131079601, 418161601, 506250000, 741200625, 796594176, 1249198336, 2136719872, 2217342464, 5554571841, 5802782976
Offset: 1

Views

Author

Hugo Pfoertner, Jan 16 2021

Keywords

Comments

It is conjectured that the intersection of A340700 and A340701 is empty, i.e., that no 3 immediately consecutive perfect powers with all exponents > 2 (A076467) exist. No counterexample < 3.4*10^30 was found.

Examples

			Initial terms of sequences A340700 .. A340706:
a(n) = x^p,
A340701(n) = A340703(n)^A340705(n) = y^q,
A340706(n) = A340701(n) - a(n) = y^q - x^p.
.
  n  a(n)    x ^  p  A340701    y ^  q  A340706 adjacent squares
  1    27 =  3 ^  3,      32 =  2 ^  5,      5  5^2=25, 6^2=36
  2    64 =  2 ^  6,      81 =  3 ^  4,     17  8^2=64, 9^2=81
  3   125 =  5 ^  3,     128 =  2 ^  7,      3  11^2=121, 12^2=144
  4   243 =  3 ^  5,     256 =  2 ^  8,     13  15^2=225, 16^2=256
  5  1000 = 10 ^  3,    1024 =  2 ^ 10,     24  31^2=961, 32^2=1024
  6  1296 =  6 ^  4,    1331 = 11 ^  3,     35  36^2=1296, 37^2=1369
  7  2187 =  3 ^  7,    2197 = 13 ^  3,     10  46^2=2116, 47^2=2209
  8 50625 = 15 ^  4,   50653 = 37 ^  3,     28  225^2=50625, 226^2=51076
  9 59049 =  3 ^ 10,   59319 = 39 ^  3,    270  243^2=59049, 244^2=59536
		

Crossrefs

The corresponding upper members of the pairs are A340701.
Cf. A117934 (excluding pairs where one of the members is a square).

Formula

a(n) = A340702(n)^A340704(n) = A340701(n) - A340706(n).

A340701 Upper of a pair of adjacent perfect powers, both with exponents > 2.

Original entry on oeis.org

32, 81, 128, 256, 1024, 1331, 2197, 50653, 59319, 195112, 279936, 456976, 614656, 3112136, 6436343, 22667121, 25412184, 38958219, 62748517, 96071912, 131096512, 418195493, 506261573, 741217625, 796597983, 1249243533, 2136750625, 2217373921, 5554637011, 5802888573
Offset: 1

Views

Author

Hugo Pfoertner, Jan 16 2021

Keywords

Examples

			See A340700.
		

Crossrefs

The corresponding lower members of the pairs are A340700.

Formula

a(n) = A340703(n)^A340705(n) = A340700(n) + A340706(n).

A342561 List points (x,y,z) having integer coordinates, sorted first by R^2 = x^2 + y^2 + z^2 and in case of ties, then by z and last by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives x-coordinates.

Original entry on oeis.org

0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 1, -1, -1, 1, 1, 0, -1, 0, 1, -1, -1, 1, 1, -1, -1, 1, 0, 2, 0, -2, 0, 0, 1, 0, -1, 0, 2, 0, -2, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, 0, -2, 0, 1, 0, -1, 0, 1, -1, -1, 1, 2, 1, -1, -2, -2, -1, 1, 2, 2, 1, -1, -2, -2, -1, 1, 2, 1, -1, -1, 1, 2, 0, -2, 0, 2, -2, -2, 2, 2, 0, -2, 0
Offset: 0

Views

Author

Hugo Pfoertner, Apr 27 2021

Keywords

Comments

This is a 3-dimensional generalization of A305575 and A305576.
y-coordinates are in A342562, z-coordinates are in A342563.
These lists can be read as an irregular table, where row r lists the respective coordinates of the points on the sphere with radius R = sqrt(r); their number (i.e., the row length) is given by A005875 = (1, 6, 12, 8, 6, 24, 24, 0, 12, 30, ...). - M. F. Hasler, Apr 27 2021

Examples

			   n    x    y    z  R^2  phi/Pi
   0    0    0    0   0   0.000
   1    0    0   -1   1   0.000
   2    1    0    0   1   0.000
   3    0    1    0   1   0.500
   4   -1    0    0   1   1.000
   5    0   -1    0   1   1.500
   6    0    0    1   1   0.000
   7    1    0   -1   2   0.000
   8    0    1   -1   2   0.500
   9   -1    0   -1   2   1.000
  10    0   -1   -1   2   1.500
  11    1    1    0   2   0.250
  12   -1    1    0   2   0.750
  13   -1   -1    0   2   1.250
  14    1   -1    0   2   1.750
  15    1    0    1   2   0.000
  16    0    1    1   2   0.500
  17   -1    0    1   2   1.000
  18    0   -1    1   2   1.500
  19    1    1   -1   3   0.250
  20   -1    1   -1   3   0.750
  21   -1   -1   -1   3   1.250
  22    1   -1   -1   3   1.750
  23    1    1    1   3   0.250
  24   -1    1    1   3   0.750
  25   -1   -1    1   3   1.250
  26    1   -1    1   3   1.750
  27    0    0   -2   4   0.000
  28    2    0    0   4   0.000
  29    0    2    0   4   0.500
		

Crossrefs

Cf. A343630, A340631, A340632, A343633 for a variant which "connects" corresponding poles of successive shells, A343640, A340641, A340642, A343643 for a square spiral variant.

Programs

  • PARI
    shell(n, Q=Qfb(1,0,1), L=List())={for(z=if(n, sqrtint((n-1)\3)+1), sqrtint(n), my(S=if(n>z^2, Set(apply(vecsort, abs(qfbsolve(Q, n-z^2, 3)))), [[0,0]])); foreach(S, s, forperm(concat(s,z), p, listput(L, p)))); for(i=1,3, for(j=1,#L, my(X=L[j]); (X[i]*=-1) && listput(L,X))); vecsort(L, (p,q)->if( p[3]!=q[3], p[3]-q[3], p[1]==q[1], q[2]-p[2], p[2]*q[2]<0, q[2]-p[2], (q[1]-p[1])*(p[2]+q[2])))} \\ Gives list of all points with Euclidean norm sqrt(n).
    A342561_vec=concat([[P[1] | P <- shell(n)] | n<-[0..7]]) \\ M. F. Hasler, Apr 27 2021

A340643 Numbers k such that the two perfect powers immediately adjacent to k^2 both have exponents greater than 2.

Original entry on oeis.org

2, 3, 5, 15, 26, 46, 82, 89, 90, 129, 323, 362, 401, 420, 610, 624, 840, 2024, 2703, 2808, 6888, 12099, 15963, 19320, 24650, 29930, 33490, 36482, 39203, 45795, 47523, 52440, 66050, 69168, 83408, 94248, 94863, 103683, 114284, 164399, 185364, 206442, 222785, 227530, 229180
Offset: 1

Views

Author

Hugo Pfoertner, Jan 14 2021

Keywords

Comments

Within the range of the data, a(n)^2 = A340642(n), i.e., no 3 immediately consecutive perfect powers x^p1, y^p2, z^p3 with min (p1, p2, p3) > 2 are seen. Is there a counterexample?

Crossrefs

Programs

  • PARI
    a340643(limit)={my(p2=999, p1=2, n2=1, n1=4); for(n=5, limit, my(p0=ispower(n)); if(p0>1, if(issquare(n1)&p2>2&p0>2, print1(sqrtint(n1),", ")); n2=n1; n1=n; p2=p1; p1=p0))};
    a340643(10^8)
    
  • PARI
    upto(n) = {n *= n; my(v = List(), res = List([2])); for(i = 2, sqrtnint(n, 3), for(e = 3, logint(n, i), listput(v, i^e) ); ); listsort(v, 1); for(i = 1, #v - 1, if(sqrtint(v[i]) + 1 == sqrtint(v[i+1]) - issquare(v[i+1]), listput(res, sqrtint(v[i+1]-issquare(v[i+1]))); ) ); res }

Extensions

More terms from David A. Corneth, Jan 14 2021
Showing 1-4 of 4 results.