cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A268067 Numbers k such that 1 + 2^k + 3^k + 5^k is prime.

Original entry on oeis.org

1, 17, 1295, 63445
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 25 2016

Keywords

Comments

a(4), if it exists, is greater than 50000. - Michael S. Branicky, Mar 31 2023

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 2000], PrimeQ[1 + 2^# + 3^# + 5^#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(1 + 2^n + 3^n + 5^n), print1(n, ", "))); \\ Altug Alkan, Jan 25 2016

Extensions

a(4) from Michael S. Branicky, Nov 03 2024

A081508 Primes of form 1 + 3^k + 5^k.

Original entry on oeis.org

3, 244672067, 14551915378461487103639747, 3552713678880267372432493847753987, 211758236813575107295480170109084902352995775163267
Offset: 1

Views

Author

Labos Elemer, Apr 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Do[s=1^w+3^w+5^w; If[IntegerQ[w/100], Print[{w}]]; If[PrimeQ[s], Print[{w, s}]], {w, 0, 1000}]
  • PARI
    lista(kmax) = {my(p); for(k = 0, kmax, p = 1 + 3^k + 5^k; if(isprime(p), print1(p, ", ")));} \\ Amiram Eldar, Aug 11 2024

Formula

a(n) = A074507(A076515(n)). - Amiram Eldar, Aug 11 2024

A268065 Integers k such that 2^k + 3^k + 5^k + k is prime.

Original entry on oeis.org

0, 1, 3, 7, 19, 33, 1363, 6663
Offset: 1

Views

Author

Emre APARI, Jan 25 2016

Keywords

Comments

a(8), if it exists, is greater than 30000. - Vaclav Kotesovec, Jan 26 2016
a(8), if it exists, is greater than 100000. - Michael S. Branicky, Dec 01 2024

Examples

			k=3: 2^3+3^3+5^3+3 = 163.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 2000], PrimeQ[2^# + 3^# + 5^# + #] &] (* Vaclav Kotesovec, Jan 25 2016 *)
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(2^n + 3^n + 5^n + n), print1(n, ", "))); \\ Altug Alkan, Jan 25 2016

Extensions

a(7) from Vaclav Kotesovec, Jan 25 2016

A261722 Values of m such that 2^m + 3^m + 5^m + 7^m + 11^m + 13^m is a prime number.

Original entry on oeis.org

1, 7, 25, 91
Offset: 1

Views

Author

Altug Alkan, Aug 29 2015

Keywords

Comments

2, 3, 5, 7, 11, 13 are first six consecutive prime numbers.
From Bruno Berselli, Sep 04 2015: (Start)
All terms are odd. In fact, assuming m even and b(k) = 4^k + 9^k + 25^k + 49^k + 121^k + 169^k, for
. k == 0, 2, 4 (mod 6), b(k) is divisible by 5;
. k == 1, 5 (mod 6), b(k) is divisible by 377 = 13*29;
. k == 3 (mod 6), b(k) is divisible by 29. (End)
From Jon E. Schoenfield, Mar 02 2018: (Start)
For n odd:
Let t(n) = 2^n + 3^n + 5^n + 7^n + 11^n + 13^n; then t(n) is divisible by prime p for certain pairs (p, n mod (p-1)):
.
p n mod (p-1) such that p|t(n)
== ============================
2 -
3 -
5 -
7 -
11 9
13 -
17 5
19 9
23 11
29 3
31 15
37 21, 29
41 1, 19
43 11, 33, 37
47 23
53 -
59 29, 55
...
The smallest prime p that divides t(n) at more than three values of n mod (p-1) is 313: 313|t(n) when n mod 312 is any of the four values {39, 117, 195, 273}, i.e., when n mod (312/4 = 78) = 39.
The smallest prime p that divides t(n) at more than four values of n mod (p-1) is 3041: 3041|t(n) when n mod 3040 is any of the 16 values {95, 285, 475, 665, 855, 1045, 1235, 1425, 1615, 1805, 1995, 2185, 2375, 2565, 2755, 2945}, i.e., when n mod (3040/16 = 190) = 95. (End)
No other terms than the four terms cited less than 25000. - Robert G. Wilson v, Mar 07 2018
No other terms than the four terms cited less than 100000. - Michael S. Branicky, Sep 28 2024

Examples

			1 is a term because 2^1 + 3^1 + 5^1 + 7^1 + 11^1 + 13^1 = 41 and 41 is a prime number.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(a) where a is 2^n+3^n+5^n+ 7^n+11^n+13^n]; // Vincenzo Librandi, Aug 30 2015
  • Mathematica
    Select[Table[{n, Sum[Prime[k]^n, {k, 6}]}, {n, 1000}], PrimeQ[#[[2]]]&] [[All, 1]] (* Michael De Vlieger, Aug 29 2015 *)
  • PARI
    for(n=1, 1e3, if(isprime(13^n+11^n+7^n+5^n+3^n+2^n), print1(n", ")))
    

Extensions

Mathematica scripts updated by Jean-François Alcover, Sep 04 2015
Showing 1-4 of 4 results.