A268067
Numbers k such that 1 + 2^k + 3^k + 5^k is prime.
Original entry on oeis.org
1, 17, 1295, 63445
Offset: 1
-
Select[Range[0, 2000], PrimeQ[1 + 2^# + 3^# + 5^#] &]
-
lista(nn) = for(n=0, nn, if(ispseudoprime(1 + 2^n + 3^n + 5^n), print1(n, ", "))); \\ Altug Alkan, Jan 25 2016
A081508
Primes of form 1 + 3^k + 5^k.
Original entry on oeis.org
3, 244672067, 14551915378461487103639747, 3552713678880267372432493847753987, 211758236813575107295480170109084902352995775163267
Offset: 1
-
Do[s=1^w+3^w+5^w; If[IntegerQ[w/100], Print[{w}]]; If[PrimeQ[s], Print[{w, s}]], {w, 0, 1000}]
-
lista(kmax) = {my(p); for(k = 0, kmax, p = 1 + 3^k + 5^k; if(isprime(p), print1(p, ", ")));} \\ Amiram Eldar, Aug 11 2024
A268065
Integers k such that 2^k + 3^k + 5^k + k is prime.
Original entry on oeis.org
0, 1, 3, 7, 19, 33, 1363, 6663
Offset: 1
k=3: 2^3+3^3+5^3+3 = 163.
-
Select[Range[0, 2000], PrimeQ[2^# + 3^# + 5^# + #] &] (* Vaclav Kotesovec, Jan 25 2016 *)
-
lista(nn) = for(n=0, nn, if(ispseudoprime(2^n + 3^n + 5^n + n), print1(n, ", "))); \\ Altug Alkan, Jan 25 2016
A261722
Values of m such that 2^m + 3^m + 5^m + 7^m + 11^m + 13^m is a prime number.
Original entry on oeis.org
1 is a term because 2^1 + 3^1 + 5^1 + 7^1 + 11^1 + 13^1 = 41 and 41 is a prime number.
-
[n: n in [0..1000] | IsPrime(a) where a is 2^n+3^n+5^n+ 7^n+11^n+13^n]; // Vincenzo Librandi, Aug 30 2015
-
Select[Table[{n, Sum[Prime[k]^n, {k, 6}]}, {n, 1000}], PrimeQ[#[[2]]]&] [[All, 1]] (* Michael De Vlieger, Aug 29 2015 *)
-
for(n=1, 1e3, if(isprime(13^n+11^n+7^n+5^n+3^n+2^n), print1(n", ")))
Showing 1-4 of 4 results.
Comments