A076527 Numbers n such that sopf(n) = sopf(n-1) - sopf(n-2), where sopf(x) = sum of the distinct prime factors of x.
8, 66, 2883, 3264, 3552, 13872, 21386, 26896, 29698, 29768, 31980, 36567, 40517, 65305, 72012, 82719, 101639, 110848, 160230, 211646, 237136, 237568, 238303, 242606, 299186, 309960, 378014, 393208, 439105, 445795, 455182, 527078, 570021
Offset: 1
Keywords
Examples
The sum of the distinct prime factors of 66 is 2 + 3 + 11 = 16; the sum of the distinct prime factors of 65 is 5 + 13 = 18; the sum of the distinct prime factors of 64 is 2; and 16 = 18 - 2. Hence 66 belongs to the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [4..571000]| &+PrimeDivisors(k-1) - &+PrimeDivisors(k-2) eq (&+PrimeDivisors(k))]; // Marius A. Burtea, Feb 12 2020
-
Mathematica
p[n_] := Apply[Plus, Transpose[FactorInteger[n]][[1]]]; Select[Range[4, 10^5], p[ # ] == p[ # - 1] - p[ # - 2] &]
Extensions
Edited and extended by Ray Chandler, Feb 13 2005