A076533 Numbers n such that sum of the distinct prime factors of phi(n) = sum of the distinct prime factors of sigma(n).
1, 3, 14, 35, 42, 70, 105, 119, 209, 210, 238, 248, 297, 357, 412, 418, 477, 594, 595, 616, 627, 714, 744, 954, 1045, 1142, 1178, 1190, 1236, 1240, 1254, 1328, 1339, 1463, 1485, 1672, 1674, 1703, 1736, 1785, 1848, 1863, 2079, 2090, 2376, 2385, 2540, 2728
Offset: 1
Keywords
Examples
sopf(sigma(14)) = 5; sopf(phi(14)) = 5; hence 14 is a term of the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
p[n_] := Apply[Plus, Transpose[FactorInteger[n]][[1]]]; Select[Range[3, 10^4], p[DivisorSigma[1, # ]] == p[EulerPhi[ # ]] &] Select[Range[3000],Total[FactorInteger[DivisorSigma[1,#]][[All,1]]] == Total[ FactorInteger[EulerPhi[#]][[All,1]]]&] (* Harvey P. Dale, Sep 20 2016 *)
-
PARI
sopf(n)=my(f=factor(n)[,1]); sum(i=1,#f,f[i]) is(n)=sopf(sigma(n))==sopf(eulerphi(n)) \\ Charles R Greathouse IV, Mar 09 2014
Extensions
Edited by Ray Chandler, Feb 13 2005
a(1) inserted by Charles R Greathouse IV, Mar 09 2014