cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076558 a(n) = r * min(e_1, ..., e_r), where n = p_1^e_1 . .... p_r^e_r is the canonical prime factorization of n, a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 4
Offset: 1

Views

Author

Joseph L. Pe, Nov 10 2002

Keywords

Comments

Omega(n) >= a(n) for n >= 1, where Omega(n) = the number of prime factors of n, counting multiplicity.
Positions of records are A000079. - David A. Corneth, May 05 2020

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{pf}, pf = Transpose[FactorInteger[n]]; Length[pf[[1]]]*Min[pf[[2]]]]; Table[a[i] - Boole[i == 1], {i, 100}]
    (* Second program: *)
    Table[Length[#] Min[#] - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[, 2]); vecmin(e) * #e); \\ Amiram Eldar, Sep 08 2024
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        l=[f[p] for p in f]
        return 0 if n==1 else len(l)*min(l)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 13 2017
    

Formula

a(n) = A001221(n) * A051904(n). - Antti Karttunen, Jul 12 2017

Extensions

a(1)=0 prepended by Antti Karttunen, Jul 12 2017