A321069 Greatest prime factor of n^3+2.
3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- D. R. Heath-Brown, The largest prime factor of x^3+2, Proceedings of the London Mathematical Society, 82:3 (2000), pp. 554-596.
- Christopher Hooley, On the greatest prime factor of a cubic polynomial, Journal für die reine und angewandte Mathematik, 303 (1978), pp. 21-50.
- A. J. Irving, The largest prime factor of x^3+2, arXiv:1412.0024 [math.NT], 2014.
Crossrefs
Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).
Programs
-
Magma
[Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
-
Mathematica
Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
-
PARI
a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018