cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076609 Palindromic numbers with prime middle digit.

Original entry on oeis.org

2, 3, 5, 7, 121, 131, 151, 171, 222, 232, 252, 272, 323, 333, 353, 373, 424, 434, 454, 474, 525, 535, 555, 575, 626, 636, 656, 676, 727, 737, 757, 777, 828, 838, 858, 878, 929, 939, 959, 979, 10201, 10301, 10501, 10701, 11211, 11311, 11511, 11711, 12221
Offset: 1

Views

Author

Jani Melik, Oct 21 2002

Keywords

Comments

There are no such with an even number of digits.

Examples

			a(12)=272=2^4*17 is palindromic number and its middle digit 7 is prime, a(13)=323=17*19 is palindromic number and its middle digit 2 is prime, a(14)=333=3^2*37 is palindromic number and its middle digit 3 is prime.
		

Crossrefs

Programs

  • Maple
    ts_numprapal := proc(n) local ad,adr,midigit; ad := convert(n,base,10): adr := ListTools[Reverse](ad): if nops(ad) mod 2 = 0 then return 1; fi; midigit := op( (nops(ad)+1)/2,ad ): if (isprime( midigit )='true' and adr=ad) then return 0; else return 1; fi end: ts_num_pal := proc(i) if ts_numprapal(i) = 0 then return (i) fi end: anumpal := [seq(ts_num_pal(i), i=1..50000)]: anumpal;
  • Mathematica
    pnpmdQ[n_]:=Module[{idn=IntegerDigits[n],len=IntegerLength[n]},OddQ[len] && PalindromeQ[n]&&PrimeQ[idn[[(len+1)/2]]]]; Select[Range[15000],pnpmdQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 08 2017 *)