A076713 Harshad (Niven) triangular numbers: triangular numbers which are divisible by the sum of their digits.
1, 3, 6, 10, 21, 36, 45, 120, 153, 171, 190, 210, 300, 351, 378, 465, 630, 666, 780, 820, 990, 1035, 1128, 1275, 1431, 1540, 1596, 1770, 2016, 2080, 2556, 2628, 2850, 2926, 3160, 3240, 3321, 3486, 3570, 4005, 4465, 4560, 4950, 5050, 5460, 5565, 5778, 5886
Offset: 1
Examples
a(5)=21: 21 is a triangular number and also a Harshad number as 21 is divisible by 2+1=3. So 21 is Harshad triangular number.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..15436
- Shyam Sunder Gupta Fascinating Triangular Numbers
Programs
-
Mathematica
TriangularNumberQ[k_] := If[IntegerQ[1/2 (Sqrt[1 + 8 k] - 1)], True, False]; Harshad[k_] := Select[Range[k], IntegerQ[ #/(Plus @@ IntegerDigits[ # ])] &]; TriangularHarshad[k_] := Select[Harshad[k], TriangularNumberQ[#] &]; TriangularHarshad[5886] (* Ant King, Dec 13 2010 *) A076713 = {}; Do[k = n*(n + 1)*1/2; If[IntegerQ[k/(Plus @@ IntegerDigits[k])], AppendTo[A076713, k]], {n,1000}]; A076713 (* K. D. Bajpai, Aug 13 2014 *)
Comments