cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242043 Pentagonal numbers that are also Niven numbers.

Original entry on oeis.org

1, 5, 12, 70, 117, 210, 247, 330, 715, 782, 1080, 1520, 1926, 2625, 2752, 3015, 3290, 3432, 4510, 5370, 5922, 6902, 7740, 8400, 9560, 11310, 12105, 13776, 14652, 15862, 17442, 21182, 21540, 23002, 24130, 26070, 27270, 30602, 31032, 32340, 34580, 38320, 39285
Offset: 1

Views

Author

K. D. Bajpai, Aug 12 2014

Keywords

Comments

Intersection of A000326 and A005349.

Examples

			a(3) = 12 = 3*(3 * 3 - 1)/2 is a pentagonal number. Since 12 is divisible by 1 + 2 = 3, it is also a Harshad number and therefore in the sequence.
a(5) = 117 = 9*(3 * 9 - 1)/2 is a pentagonal number. Since 117 is divisible by 1 + 1 + 7 = 9 is also a Harshad number, and therefore in the sequence.
		

Crossrefs

Programs

  • Mathematica
    A242043 = {}; Do[k = (3*n^2 - n)/2; If[IntegerQ[k/(Plus @@ IntegerDigits[k])], AppendTo[A242043, k]], {n, 300}]; A242043 (* Bajpai *)
    Select[Table[n(3n - 1)/2, {n, 200}], Divisible[#, Plus@@IntegerDigits[#]] &] (* Alonso del Arte, Aug 16 2014 *)
    Select[PolygonalNumber[5,Range[200]],Mod[#,Total[IntegerDigits[#]]]==0&] (* Harvey P. Dale, Nov 30 2022 *)

A243008 Triangular numbers divisible by the square of the sum of their digits.

Original entry on oeis.org

1, 10, 3240, 3321, 13041, 13203, 15400, 65341, 80200, 90100, 161028, 210276, 260281, 265356, 266085, 300700, 346528, 500500, 937765, 947376, 1043290, 1228528, 1313010, 1628110, 2049300, 2390391, 2421100, 3357936, 3746953, 4020030, 5250420, 6641190, 6857956, 6939675
Offset: 1

Views

Author

K. D. Bajpai, Aug 20 2014

Keywords

Comments

Intersection of A000217 and A072081.

Examples

			a(3) = 3240 = 80 * (80 + 1)/2 is a triangular number. Since 3240 is divisible by (3 + 2 + 4 + 0)^2 = 81, it appears in the sequence.
a(3) = 3321 = 81 * (81 + 1)/2 is a triangular number. Since 3321 is divisible by (3 + 3 + 2 + 1)^2 = 81, it appears in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n*(n + 1)/2, {n, 10000}], Divisible[#, Plus @@ IntegerDigits[#]^2] &]
  • PARI
    for(n=1,10^4,s=n*(n+1)/2;if(s%(sumdigits(s)^2)==0,print1(s,", "))) \\ Derek Orr, Aug 23 2014

A375824 Triangular numbers whose sum of digits is 9.

Original entry on oeis.org

36, 45, 153, 171, 351, 630, 1035, 1431, 2016, 3240, 3321, 4005, 8001, 10440, 13041, 13203, 16110, 21321, 23220, 25200, 101025, 105111, 114003, 222111, 320400, 321201, 1010331, 1241100, 1313010, 1400301, 2013021, 2031120, 2410110, 4020030, 10006101, 11203011, 20012301, 32004000, 32012001, 33020001
Offset: 1

Views

Author

Robert Israel, Aug 30 2024

Keywords

Comments

Infinite subsequences include 2 * 10^(2*k) + 13 * 10^k + 21, 2 * 10^(2*k) + 31 * 10^k + 120, 32 * 10^(2*k) + 4 * 10^k, and 32 * 10^(2*k) + 12 * 10^k + 1.
Conjecture: the last term not of one of those subsequences is a(53) = 210010000005.

Examples

			a(4) = 153 is a term because 153 = 17 * 18/2 is a triangular number and 1 + 5 + 3 = 9.
		

Crossrefs

Intersection of A000217 and A052223. Contained in A117404 and A076713.

Programs

  • Maple
    F:= proc(d,s) option remember;
    # d-digit numbers with sum of digits s
          local R,i;
          R:= {};
          for i from 0 to min(s,9) do
            R:= R union map(t -> 10*t+i, procname(d-1,s-i))
          od;
          R
    end proc:
    F(1,0):= {}:
    for i from 1 to 9 do F(1,i):= {i} od:
    sort(convert(`union`(seq(select(t -> issqr(1+8*t), F(d,9)),d=1..12)),list));
  • Mathematica
    Select[Range[10000](Range[10000]+1)/2,DigitSum[#]==9 &] (* Stefano Spezia, Sep 01 2024 *)
  • PARI
    select(x->(sumdigits(x)==9), vector(10000, n, n*(n+1)/2)) \\ Michel Marcus, Aug 31 2024
Showing 1-3 of 3 results.