A076730 Maximum number of (distinct) primes that an n-digit number may shelter (i.e., primes contained among all digital substrings' permutations).
1, 4, 11, 31, 106, 402, 1953, 10542, 64905, 362451, 2970505
Offset: 1
Examples
We have a(3)=11, since among numbers 100 through 999, the smallest ones having 5, 6, 7, 8, 10, 11 embedded primes are respectively 107, 127, 113, 167, 179, 137 (the last of these being the first reaching the maximum number of 11 embedded primes, viz. 3, 7, 13, 17, 31, 37, 71, 73, 137, 173, 317).
Links
- M. Keith, Integers containing many embedded primes
- W. Schneider, MATHEWS, Primeval Numbers
Crossrefs
Programs
-
PARI
a(n,m=0)=for(k=10^(n-1),10^n-1,A039993(k)>m&&m=A039993(k));m \\ M. F. Hasler, Mar 09 2014
-
Python
# see linked program in A076449
Formula
a(n) = A039993(A134596(n)) = max { A039993(m); m in A072857 and m < 10^n }. - M. F. Hasler, Mar 12 2014
Extensions
Link fixed by Charles R Greathouse IV, Aug 13 2009
a(6) from M. F. Hasler, Mar 09 2014
a(7)-a(11) from Robert G. Wilson v, Mar 11 2014
a(9)-a(11) corrected by M. F. Hasler, Oct 15 2019
Comments