cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077618 Number of occurrences of n in A076734.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 2, 0, 0, 1, 7, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 6, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 3, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 4, 1, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 12 2002

Keywords

Comments

n is squarefree iff a(n)>0, see A077619, A077622.
If n is prime, a(n)=1. - Robert Israel, Oct 20 2017

Examples

			For n=10, we have exactly two numbers k <= 10 such that A001222(k) = A001222(10) = 2, for which 10 is the least squarefree number >= k, namely 9 (= 3*3) and 10 (= 2*5), thus a(10) = 2. - _Antti Karttunen_, Oct 20 2017
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    M:= map(numtheory:-bigomega, [$1..N]):
    S:= map(numtheory:-issqrfree, [$1..N]):
    f:= proc(n) local m,k,t;
      if not S[n] then return 0 fi;
      m:= M[n];
      t:= 1;
      for k from n-1 to 1 by -1 do
        if M[k] = m then
          if S[k] then return t
          else t:= t+1
          fi;
        fi
      od;
      t
    end proc:
    map(f, [$1..N]); # Robert Israel, Oct 20 2017
  • Mathematica
    Block[{nn = 120, s, t}, s = KeySelect[KeySort@ PositionIndex@ Array[Which[SquareFreeQ@ #1, #1, #3 < #1, #3, True, Block[{k = #1}, While[Nand[SquareFreeQ[k], PrimeOmega[k] == #2], k++]; k]] & @@ {#, PrimeOmega@ #, Times @@ Prime@ Range@ #} &, 2 nn], # < nn &]; t = ConstantArray[0, nn]; ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]] (* Michael De Vlieger, Oct 20 2017 *)
  • PARI
    A077618(n) = { my(b = bigomega(n),s=1); if(1==n,n,if(!issquarefree(n),0,k=n-1; while(k > 1,if(bigomega(k)==b,if(issquarefree(k),return(s),s++)); k--; ); (s))); }; \\ Antti Karttunen, Oct 20 2017
    
  • PARI
    first(n) = {my(test = vector(n, i, [bigomega(i), i, issquarefree(i), 1]),
    biglist = vector(logint(n, 2) + 1)); forstep(i = n, 1, -1, if(test[i][3] == 0,
    test[i][4] = 0; if(biglist[test[i][1] + 1]!=0, test[biglist[test[i][1] + 1]][4]++)
    , biglist[test[i][1] + 1] = test[i][2])); vector(n, i, test[i][4])} \\ David A. Corneth, Oct 20 2017

Formula

a(A002110(n)) = A077622(n). - Antti Karttunen, Oct 20 2017, after Reinhard Zumkeller's comment in the latter sequence.

Extensions

Term a(10) corrected by Antti Karttunen, Oct 20 2017

A077619 Number of occurrences of n-th squarefree number in A076734.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 12 2002

Keywords

Crossrefs

Formula

a(n) = A077618(A005117(n)).
A077618(a(n)) > 0.

A077621 Squarefree numbers occurring more than once in A076734.

Original entry on oeis.org

6, 10, 26, 30, 51, 66, 70, 78, 102, 122, 130, 154, 165, 174, 177, 182, 190, 210, 222, 238, 246, 266, 273, 282, 285, 291, 310, 318, 330, 345, 357, 362, 366, 370, 390, 399, 406, 418, 426, 429, 438, 455, 462, 483, 510, 518, 530, 533, 534, 546, 555, 561, 570
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 12 2002

Keywords

Comments

Primorials are a subsequence, see A077622.

Crossrefs

Formula

A077618(a(n)) > 1.

A077620 Numbers occurring only once in A076734.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 22, 23, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 12 2002

Keywords

Comments

Primes are a subsequence: A077618(A000040(n)) = 1.

Crossrefs

Formula

A077618(a(n)) = 1.
Showing 1-4 of 4 results.