cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076737 Let u(1)=u(2)=u(3)=2, u(n)=(1+u(n-1)u(n-2))/u(n-3); then a(n) is the numerator of u(n).

Original entry on oeis.org

2, 2, 2, 5, 3, 17, 11, 65, 43, 257, 171, 1025, 683, 4097, 2731, 16385, 10923, 65537, 43691, 262145, 174763, 1048577, 699051, 4194305, 2796203, 16777217, 11184811, 67108865, 44739243, 268435457, 178956971, 1073741825, 715827883, 4294967297
Offset: 1

Views

Author

Benoit Cloitre, Nov 24 2002

Keywords

Crossrefs

Cf. A005246, A076736 (denominator of u(n)).

Programs

  • Maple
    2,2,2,seq(2/3+(1/6)*2^k+(1/12)*(-1)^k*2^k+(1/3)*(-1)^k,k=4..50); # Robert Israel, Aug 10 2015
    H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -8):
    a := n -> `if`(n < 5, [2, 2, 2, 5][n], H(n-2, irem(n, 2), 1/2)):
    seq(simplify(a(n)), n=1..34); # Peter Luschny, Sep 03 2019
  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,(1+b c)/a}; NestList[nxt,{2,2,2},40][[All,1]]// Numerator (* Harvey P. Dale, Oct 31 2021 *)

Formula

For n>4, a(n) = 2^A028242(n-4)*u(n); u(2n) = 2^(n-1)+1/2^n hence a(2n) = 4^(n-1)+1.
From Michael Somos (via Benoit Cloitre), Nov 29 2002: (Start)
a(1)=a(2)=a(3)=2, a(n+2) = (1+2^n)/(1+2*(n mod 2)).
For k>=2, a(2k+1) = A001045(2k-1). (End)
Empirical g.f.: x*(4*x^6+x^4-5*x^3-8*x^2+2*x+2) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)). - Colin Barker, Oct 14 2014
This follows from the Somos formula for a(n+2). - Robert Israel, Aug 10 2015
a(1)=a(2)=a(3)=2 and, for n>3, a(n) = denominator(1/2+6/(4+2^n)). - Gerry Martens, Aug 10 2015
a(n) = H(n - 2, n mod 2, 1/2) for n >= 5 where H(n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -8). - Peter Luschny, Sep 03 2019