cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076739 Number of compositions of n into Fibonacci numbers (1 counted as single Fibonacci number).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 49, 94, 177, 336, 637, 1206, 2288, 4335, 8216, 15574, 29515, 55943, 106030, 200959, 380889, 721906, 1368251, 2593291, 4915135, 9315811, 17656534, 33464955, 63427148, 120215370, 227847814, 431846824, 818492263
Offset: 0

Views

Author

David W. Wilson, Jun 19 2003

Keywords

Comments

From Gary W. Adamson, Sep 12 2008: (Start)
Equals right border of triangle A144172 and row sums with offset 1.
Equals INVERT transform of the characteristic function of the Fibonacci numbers starting with offset 1: (1, 1, 1, 0, 1, ...) (if the first "1" is retained: = 1, 1, 2, 4, 7, 14, ...). (End)

Examples

			a(4) = 7 since 3+1 = 2+2 = 2+1+1 = 1+3 = 1+2+1 = 1+1+2 = 1+1+1+1.
		

References

  • A. Knopfmacher & N. Robbins, On binary and Fibonacci compositions, Annales Univ. Sci. Budapest, Sect. Comp. 22 (2003) 193-206. - Neville Robbins, Mar 06 2010

Crossrefs

Cf. A080888.
Cf. A144172, A010056. - Gary W. Adamson, Sep 12 2008

Programs

  • Maple
    a:= proc(n) option remember; local r, f;
          if n=0 then 1 else r, f:= 0, [1$2];
            while f[2] <= n do r:= r+a(n-f[2]);
              f:= [f[2], f[1]+f[2]]
            od; r
          fi
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 20 2017
  • Mathematica
    max=40; 1/(1-Total[x^Fibonacci[Range[2, Ceiling[Sqrt[max]]+2]]]) + O[x]^max // CoefficientList[#, x]& (* Jean-François Alcover, Mar 29 2017, after Vladeta Jovovic *)

Formula

G.f.: 1/(1-Sum_{k>1} x^Fibonacci(k)). - Vladeta Jovovic, Jun 20 2003
a(n) ~ c * d^n, where d=1.8953300920998046150867311236880760382884608526935119695..., c=0.5615834114640436146286049301387868479914202616794427372... - Vaclav Kotesovec, May 01 2014