A076739 Number of compositions of n into Fibonacci numbers (1 counted as single Fibonacci number).
1, 1, 2, 4, 7, 14, 26, 49, 94, 177, 336, 637, 1206, 2288, 4335, 8216, 15574, 29515, 55943, 106030, 200959, 380889, 721906, 1368251, 2593291, 4915135, 9315811, 17656534, 33464955, 63427148, 120215370, 227847814, 431846824, 818492263
Offset: 0
Keywords
Examples
a(4) = 7 since 3+1 = 2+2 = 2+1+1 = 1+3 = 1+2+1 = 1+1+2 = 1+1+1+1.
References
- A. Knopfmacher & N. Robbins, On binary and Fibonacci compositions, Annales Univ. Sci. Budapest, Sect. Comp. 22 (2003) 193-206. - Neville Robbins, Mar 06 2010
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3600 (first 301 terms from T. D. Noe)
Crossrefs
Cf. A080888.
Programs
-
Maple
a:= proc(n) option remember; local r, f; if n=0 then 1 else r, f:= 0, [1$2]; while f[2] <= n do r:= r+a(n-f[2]); f:= [f[2], f[1]+f[2]] od; r fi end: seq(a(n), n=0..35); # Alois P. Heinz, Feb 20 2017
-
Mathematica
max=40; 1/(1-Total[x^Fibonacci[Range[2, Ceiling[Sqrt[max]]+2]]]) + O[x]^max // CoefficientList[#, x]& (* Jean-François Alcover, Mar 29 2017, after Vladeta Jovovic *)
Formula
G.f.: 1/(1-Sum_{k>1} x^Fibonacci(k)). - Vladeta Jovovic, Jun 20 2003
a(n) ~ c * d^n, where d=1.8953300920998046150867311236880760382884608526935119695..., c=0.5615834114640436146286049301387868479914202616794427372... - Vaclav Kotesovec, May 01 2014
Comments