A144172
Eigentriangle, row sums = A076739, the number of compositions into Fibonacci numbers.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 0, 1, 2, 4, 1, 0, 2, 4, 7, 0, 1, 0, 4, 7, 14, 0, 0, 2, 0, 7, 14, 26, 1, 0, 0, 4, 0, 14, 26, 49, 0, 1, 0, 0, 7, 0, 26, 49, 94, 0, 0, 2, 0, 0, 14, 0, 49, 94, 177, 0, 0, 0, 4, 0, 0, 26, 0, 94, 177, 336, 0, 0, 0, 0, 7, 0, 0, 49, 0, 177, 336, 637
Offset: 1
First few rows of the triangle =
1;
1, 1;
1, 1, 2;
0, 1, 2, 4;
1, 0, 2, 4, 7;
0, 1, 0, 4, 7, 14;
0, 0, 2, 0, 7, 14, 26;
1, 0, 0, 4, 0, 14, 26, 49;
0, 1, 0, 0, 7, 0, 26, 49, 94;
0, 0, 2, 0, 0, 14, 0, 49, 94, 177;
0, 0, 0, 4, 0, 0, 26, 0, 94, 177, 336;
0, 0, 0, 0, 7, 0, 0, 49, 0, 177, 336, 637;
1, 0, 0, 0, 0, 14, 0, 0, 94, 0, 336, 637, 1206;
...
Example: row 5 = (1, 0, 2, 4, 7) = termwise product of (1, 0, 1, 1, 1) and (1, 1, 2, 4, 7).
A121548
Triangle read by rows: T(n,k) is the number of compositions of n into k Fibonacci numbers (1 <= k <= n; only one 1 is considered as a Fibonacci number).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 0, 3, 3, 1, 1, 2, 6, 4, 1, 0, 3, 7, 10, 5, 1, 0, 2, 9, 16, 15, 6, 1, 1, 2, 9, 23, 30, 21, 7, 1, 0, 2, 10, 28, 50, 50, 28, 8, 1, 0, 3, 9, 34, 71, 96, 77, 36, 9, 1, 0, 2, 12, 36, 95, 156, 168, 112, 45, 10, 1, 0, 0, 12, 43, 115, 231, 308, 274, 156, 55, 11, 1, 1, 2, 9, 48, 140, 312, 504, 560, 423, 210, 66, 12, 1
Offset: 1
T(5,3)=6 because we have [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1] and [3,1,1].
Triangle starts:
1;
1, 1;
1, 2, 1;
0, 3, 3, 1;
1, 2, 6, 4, 1;
0, 3, 7, 10, 5, 1;
0, 2, 9, 16, 15, 6, 1;
...
-
with(combinat): G:=1/(1-t*sum(z^fibonacci(i),i=2..40))-1: Gser:=simplify(series(G,z=0,25)): for n from 1 to 23 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 15 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form
# second Maple program:
g:= proc(n) g(n):= (t-> issqr(t+4) or issqr(t-4))(5*n^2) end:
T:= proc(n, t) option remember;
`if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
`if`(g(j), T(n-j, t-1), 0), j=1..n)))
end:
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Oct 10 2022
-
nmax = 14;
T = Rest@CoefficientList[#, t]& /@ Rest@(1/(1 - t*Sum[z^Fibonacci[i],
{i, 2, nmax}]) - 1 + O[z]^(nmax+1) // CoefficientList[#, z]&);
Table[T[[n, k]], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 02 2022 *)
A357688
Number of ways to write n as an ordered sum of four positive Fibonacci numbers (with a single type of 1).
Original entry on oeis.org
1, 4, 10, 16, 23, 28, 34, 36, 43, 48, 50, 48, 50, 56, 58, 64, 67, 60, 58, 52, 64, 64, 70, 68, 70, 76, 70, 72, 79, 60, 60, 48, 58, 68, 60, 84, 80, 64, 82, 64, 82, 88, 66, 76, 66, 64, 84, 60, 79, 60, 24, 60, 36, 60, 74, 48, 88, 76, 72, 96, 68, 88, 76, 48, 82, 60, 70
Offset: 4
-
nmax = 70; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 2, 21}]^4, {x, 0, nmax}], x] // Drop[#, 4] &
A357690
Number of ways to write n as an ordered sum of five positive Fibonacci numbers (with a single type of 1).
Original entry on oeis.org
1, 5, 15, 30, 50, 71, 95, 115, 140, 165, 191, 205, 220, 240, 260, 285, 310, 325, 325, 320, 341, 350, 380, 385, 405, 420, 430, 450, 465, 465, 445, 410, 435, 425, 450, 481, 495, 515, 490, 510, 555, 525, 580, 540, 530, 570, 530, 580, 600, 520, 525, 440, 455, 520, 445, 555, 530
Offset: 5
-
nmax = 61; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 2, 21}]^5, {x, 0, nmax}], x] // Drop[#, 5] &
A357691
Number of ways to write n as an ordered sum of six positive Fibonacci numbers (with a single type of 1).
Original entry on oeis.org
1, 6, 21, 50, 96, 156, 231, 312, 405, 506, 621, 726, 828, 930, 1041, 1160, 1290, 1422, 1520, 1590, 1677, 1766, 1887, 1980, 2106, 2196, 2310, 2426, 2550, 2670, 2706, 2700, 2736, 2756, 2850, 2916, 3071, 3156, 3186, 3296, 3396, 3510, 3621, 3636, 3765, 3720, 3840, 3966, 4010
Offset: 6
-
nmax = 54; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 2, 21}]^6, {x, 0, nmax}], x] // Drop[#, 6] &
A218396
Number of compositions of n into distinct (nonzero) Fibonacci numbers.
Original entry on oeis.org
1, 1, 1, 3, 2, 3, 8, 2, 9, 8, 8, 32, 6, 9, 32, 8, 38, 30, 32, 150, 6, 33, 32, 32, 158, 30, 38, 174, 30, 176, 150, 150, 870, 24, 33, 152, 32, 182, 150, 158, 894, 30, 182, 174, 174, 1014, 144, 176, 990, 150, 1014, 864, 870, 5904, 24, 153, 152, 152, 902, 150, 182, 1014, 150, 1022, 894, 894, 6054, 144
Offset: 0
There are a(37)=182 such compositions of 37. Each of the 6 partitions of 37 into distinct Fibonacci numbers corresponds to m! compositions (where m is the number of parts):
#: partition ( m! compositions)
1: 1 2 5 8 21 (120 compositions)
2: 1 2 13 21 ( 24 compositions)
3: 1 2 34 ( 6 compositions)
4: 3 5 8 21 ( 24 compositions)
5: 3 13 21 ( 6 compositions)
6: 3 34 ( 2 compositions)
The number of compositions is 120 + 24 + 6 + 24 + 6 + 2 = 182.
Cf.
A032021 (compositions into distinct odd numbers).
Cf.
A000119 (partitions into distinct nonzero Fibonacci numbers),
A000700 (partitions into distinct odd numbers).
Cf.
A076739 (compositions into Fibonacci numbers).
A359514
Number of compositions (ordered partitions) of n into at most 2 positive Fibonacci numbers (with a single type of 1).
Original entry on oeis.org
1, 1, 2, 3, 3, 3, 3, 2, 3, 2, 3, 2, 0, 3, 2, 2, 3, 0, 2, 0, 0, 3, 2, 2, 2, 0, 3, 0, 0, 2, 0, 0, 0, 0, 3, 2, 2, 2, 0, 2, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 2, 0, 2
Offset: 0
-
g:= proc(n) g(n):= (t-> issqr(t+4) or issqr(t-4))(5*n^2) end:
b:= proc(n, t) option remember; `if`(n=0, 1, `if`(t<1, 0,
add(`if`(g(j), b(n-j, t-1), 0), j=1..n)))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..94); # Alois P. Heinz, Jan 03 2023
-
g[n_] := IntegerQ@Sqrt[# + 4] || IntegerQ@Sqrt[# - 4]&[5 n^2];
b[n_, t_] := b[n, t] = If[n == 0, 1, If[t < 1, 0, Sum[If[g[j], b[n - j, t - 1], 0], {j, 1, n}]]];
a[n_] := b[n, 2];
Table[a[n], {n, 0, 94}] (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)
A288039
Number of compositions (ordered partitions) of n into Lucas numbers (beginning with 1) (A000204).
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 9, 16, 27, 43, 70, 118, 195, 318, 524, 868, 1430, 2351, 3878, 6399, 10542, 17367, 28634, 47206, 77793, 128212, 211346, 348360, 574153, 946342, 1559849, 2571016, 4237616, 6984659, 11512526, 18975464, 31276187, 51550993, 84968944, 140049801, 230836734, 380476447, 627119783, 1033648857
Offset: 0
a(4) = 4 because we have [4], [3, 1], [1, 3] and [1, 1, 1, 1].
-
CoefficientList[Series[1/(1 - Sum[x^LucasL[k], {k, 1, 15}]), {x, 0, 43}], x]
A357694
Number of ways to write n as an ordered sum of seven positive Fibonacci numbers (with a single type of 1).
Original entry on oeis.org
1, 7, 28, 77, 168, 308, 504, 750, 1050, 1400, 1813, 2261, 2737, 3227, 3753, 4312, 4921, 5579, 6230, 6832, 7413, 8008, 8652, 9289, 9996, 10654, 11361, 12061, 12853, 13657, 14357, 14924, 15393, 15869, 16408, 16933, 17689, 18319, 18949, 19537, 20244, 21049, 21728
Offset: 7
Cf.
A000045,
A076739,
A121548,
A121549,
A121550,
A319400,
A357688,
A357690,
A357691,
A357716,
A357717.
-
nmax = 49; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 2, 21}]^7, {x, 0, nmax}], x] // Drop[#, 7] &
A357716
Number of ways to write n as an ordered sum of eight positive Fibonacci numbers (with a single type of 1).
Original entry on oeis.org
1, 8, 36, 112, 274, 560, 1008, 1640, 2479, 3536, 4844, 6392, 8170, 10136, 12308, 14680, 17291, 20160, 23248, 26440, 29674, 32992, 36456, 40040, 43834, 47712, 51752, 55840, 60250, 64856, 69560, 74088, 78331, 82440, 86500, 90616, 95074, 99568, 104188, 108528, 113304
Offset: 8
Cf.
A000045,
A076739,
A121548,
A121549,
A121550,
A319401,
A357688,
A357690,
A357691,
A357694,
A357717.
-
nmax = 48; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 2, 21}]^8, {x, 0, nmax}], x] // Drop[#, 8] &
Showing 1-10 of 21 results.
Comments