cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076256 Coefficients of the polynomials in the numerator of 1/(1+x^2) and its successive derivatives, starting with the constant term.

Original entry on oeis.org

1, 0, -2, -2, 0, 6, 0, 24, 0, -24, 24, 0, -240, 0, 120, 0, -720, 0, 2400, 0, -720, -720, 0, 15120, 0, -25200, 0, 5040, 0, 40320, 0, -282240, 0, 282240, 0, -40320, 40320, 0, -1451520, 0, 5080320, 0, -3386880, 0, 362880, 0, -3628800, 0, 43545600, 0, -91445760, 0, 43545600, 0, -3628800
Offset: 0

Views

Author

Mohammad K. Azarian, Nov 05 2002

Keywords

Comments

Let T(n, k) be the coefficient of x^k in the numerator of the n-th derivative of 1/(1+x^2).
The denominators are (1+x^2)^(n+1), whose coefficients are the binomial coefficients, A007318.

Examples

			Triangle begins:
     1;
     0,    -2;
    -2,     0,     6;
     0,    24,     0,     -24;
    24,     0,  -240,       0,    120;
     0,  -720,     0,    2400,      0,   -720;
  -720,     0, 15120,       0, -25200,      0, 5040;
     0, 40320,     0, -282240,      0, 282240,    0, -40320;
   ...
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Coefficient[Expand[Together[(1+x^2)^(n+1)*D[1/(1+x^2), {x, n}]]], x, k]; Flatten[Table[a[n, k], {n, 0, 10}, {k, 0, n}]]
  • PARI
    T(n,k) = if((n+k)%2, 0, (-1)^((n+k)/2)*n!*binomial(n+1, k)) \\ Andrew Howroyd, Aug 08 2024

Formula

T(n, k) = (-1)^((n+k)/2)*n!*binomial(n+1, k) for n + k even;
T(n, k) = 0 for n + k odd.
E.g.f.: A(x,t) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^n*t^k/n! = 1/(1 + 2*x*t + x^2*(1+t^2)). - Fabian Pereyra, Aug 08 2024
From Fabian Pereyra, Sep 11 2024: (Start)
T(n,k) = -n*(n-1)*T(n-2,k) - 2*n*T(n-1,k-1) - n*(n-1)*T(n-2,k-2), with T(0,0) = 1, T(n,k) = 0 if k<0 or k>n.
Let p(n,x) the n-th polynomial in x defined by: p(n,x) = Sum_{k=0..n} T(n,k)*x^k.
Then, the p(n,x) satisfy:
p(n,x) = -2*n*x*p(n-1,x) - n*(n-1)*(1+x^2)*p(n-2,x).
p'(n,x) = -n*(n+1)*p(n-1,x).
(1+x^2)*p''(n,x) - 2*n*x*p'(n,x) + n*(n+1)*p(n,x) = 0.
Integral_{x=-inf..inf} p(n,x)*p(m,x)*(1/(1+x^2))^(max(n,m)+1) dx = n!*(n+1)!*pi* delta(n,m), where delta(n,m) is the Kronecker delta. (End)
Sum_{k=0..n} abs(T(n,k)) = A000165(n). - Alois P. Heinz, Sep 18 2024

Extensions

Edited by Dean Hickerson, Nov 28 2002

A076743 Nonzero coefficients of the polynomials in the numerator of 1/(1+x^2) and its successive derivatives, starting with the highest power of x.

Original entry on oeis.org

1, -2, 6, -2, -24, 24, 120, -240, 24, -720, 2400, -720, 5040, -25200, 15120, -720, -40320, 282240, -282240, 40320, 362880, -3386880, 5080320, -1451520, 40320, -3628800, 43545600, -91445760, 43545600, -3628800, 39916800, -598752000, 1676505600
Offset: 0

Views

Author

Mohammad K. Azarian, Nov 11 2002

Keywords

Comments

Denominator of n-th derivative is (1+x^2)^(n+1), whose coefficients are the binomial coefficients, A007318.
The unsigned sequence 1,2,6,2,24,24,120,240,24,720,... is n-th derivative of 1/(1-x^2). For 0<=k<=n, let a(n,k) be the coefficient of x^k in the numerator of the n-th derivative of 1/(1-x^2). If n+k is even, a(n,k)=n!*binomial(n+1,k); if n+k is odd, a(n,k)=0. The nonzero coefficients of the numerators starting with the highest power of x are 1; 2; 6,2; 24,24; ... In fact this is the (n-1)-st derivative of arctanh(x). - Rostislav Kollman (kollman(AT)dynasig.cz), Jan 04 2005

Examples

			The nonzero coefficients of the numerators starting with the highest power of x are: 1; -2; 6,-2; -24,24; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Coefficient[Expand[Together[(1+x^2)^(n+1)*D[1/(1+x^2), {x, n}]]], x, k]; Select[Flatten[Table[a[n, k], {n, 0, 10}, {k, n, 0, -1}]], #!=0&]

Formula

For 0<=k<=n, let a(n, k) be the coefficient of x^k in the numerator of the n-th derivative of 1/(1+x^2). If n+k is even, a(n, k) = (-1)^((n+k)/2)*n!*binomial(n+1, k); if n+k is odd, a(n, k)=0.

Extensions

Edited by Dean Hickerson, Nov 28 2002

A076257 Coefficients of the polynomials in the numerator of 1/(1+x^2) and its successive derivatives, starting with the coefficient of the highest power of x.

Original entry on oeis.org

1, -2, 0, 6, 0, -2, -24, 0, 24, 0, 120, 0, -240, 0, 24, -720, 0, 2400, 0, -720, 0, 5040, 0, -25200, 0, 15120, 0, -720, -40320, 0, 282240, 0, -282240, 0, 40320, 0, 362880, 0, -3386880, 0, 5080320, 0, -1451520, 0, 40320, -3628800, 0, 43545600, 0, -91445760, 0, 43545600, 0
Offset: 0

Views

Author

Mohammad K. Azarian, Nov 05 2002

Keywords

Comments

Denominator of n-th derivative is (1+x^2)^(n+1), whose coefficients are the binomial coefficients, A007318.

Examples

			The coefficients of the numerators starting with the coefficient of the highest power of x are 1; -2,0; 6,0,-2; -24,0,24,0; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Coefficient[Expand[Together[(1+x^2)^(n+1)*D[1/(1+x^2), {x, n}]]], x, k]; Flatten[Table[a[n, k], {n, 0, 10}, {k, n, 0, -1}]]

Formula

For 0<=k<=n, let a(n, k) be the coefficient of x^k in the numerator of the n-th derivative of 1/(1+x^2). If n+k is even, a(n, k) = (-1)^((n+k)/2)*n!*binomial(n+1, k); if n+k is odd, a(n, k)=0.

Extensions

Edited by Dean Hickerson, Nov 28 2002
Showing 1-3 of 3 results.