A076756 Triangle of coefficients of characteristic polynomial of M_n, the n X n matrix M_(i,j) = min(i,j).
1, -1, 1, 1, -3, 1, -1, 5, -6, 1, 1, -7, 15, -10, 1, -1, 9, -28, 35, -15, 1, 1, -11, 45, -84, 70, -21, 1, -1, 13, -66, 165, -210, 126, -28, 1, 1, -15, 91, -286, 495, -462, 210, -36, 1, -1, 17, -120, 455, -1001, 1287, -924, 330, -45, 1, 1, -19, 153, -680, 1820, -3003, 3003, -1716, 495, -55, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 1, -3, 1; -1, 5, -6, 1; 1, -7, 15, -10, 1; -1, 9, -28, 35, -15, 1; 1, -11, 45, -84, 70, -21, 1; -1, 13, -66, 165, -210, 126, -28, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened (rows 0..60 from Enrique Pérez Herrero)
- J. L. Jacobsen, and J. Salas, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV. Chromatic polynomial with cyclic boundary conditions, J. Stat. Phys. 122 (2006) 705-760, arXiv:cond-mat/0407444. See Eq. 2.27. - _N. J. A. Sloane_, Mar 14 2014
Programs
-
Maple
T:=(n, k)-> binomial(2*n-k, k)*(-1)^(n+k): seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Feb 01 2013
-
Mathematica
T[n_, k_] := Binomial[2*n - k, k]*(-1)^(n + k); Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 12 2015, after Alois P. Heinz *)
Extensions
Offset corrected by Alois P. Heinz, Feb 01 2013
Comments