A054142
Triangular array binomial(2*n-k, k), k=0..n, n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 15, 10, 1, 1, 9, 28, 35, 15, 1, 1, 11, 45, 84, 70, 21, 1, 1, 13, 66, 165, 210, 126, 28, 1, 1, 15, 91, 286, 495, 462, 210, 36, 1, 1, 17, 120, 455, 1001, 1287, 924, 330, 45, 1, 1, 19, 153, 680, 1820, 3003, 3003, 1716, 495, 55, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 5, 6, 1;
1, 7, 15, 10, 1;
1, 9, 28, 35, 15, 1;
1, 11, 45, 84, 70, 21, 1;
1, 13, 66, 165, 210, 126, 28, 1;
1, 15, 91, 286, 495, 462, 210, 36, 1; ...
...
(0, 1, 0, 0, 0, 0, ...) DELTA (1, 0, 1, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 5, 6, 1;
0, 1, 7, 15, 10, 1;
0, 1, 9, 28, 35, 15, 1. _Philippe Deléham_, Apr 01 2012
- Vincenzo Librandi, Table of n, a(n) for n = 0..495
- E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
- D. Dumont and J. Zeng, Polynomes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
- Molly Fenn and Eric Sommers, A transitivity result for ad-nilpotent ideals in type A, arXiv:2101.04091 [math.RT], 2021.
- J. L. Jacobsen, and J. Salas, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV. Chromatic polynomial with cyclic boundary conditions, J. Stat. Phys. 122 (2006) 705-760, arXiv:cond-mat/0407444 See Eq. 2.27. Mentions this sequence. - _N. J. A. Sloane_, Mar 14 2014
- Jay Kappraff and Gary W. Adamson, Polygons and Chaos, 5th Interdispl Symm. Congress and Exh. Jul 8-14, Sydney, 2001 - [with commercial pop-ups].
- Jay Kappraff and Gary W. Adamson, Polygons and Chaos, Journal of Dynamical Systems and Geometric Theories, Vol. 2 pp. 79-94, (Nov 2004).
These are the even-indexed rows of
A011973, the odd-indexed rows form
A053123.
Cf.
A000108,
A003558,
A027989,
A052535,
A054142,
A076756,
A084938,
A085478,
A098435,
A115139,
A172431,
A172991,
A188648.
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n-k,k) ))); # G. C. Greubel, Aug 01 2019
-
[Binomial(2*n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
-
T:=(n,k)->binomial(2*n-k,k): seq(seq(T(n,k), k=0..n), n=0..11);
-
Flatten[Table[Binomial[2n - k, k], {n, 0, 11}, {k, 0, n}]] (* Emanuele Munarini, Apr 07 2011 *)
-
create_list(binomial(2*n-k,k),n,0,10,k,0,n); /* Emanuele Munarini, Apr 07 2011 */
-
T(n,k)=if(n<0,0,polcoeff(charpoly(matrix(n,n,i,j,-min(i,j))),k))
-
[[binomial(2*n-k,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
A123970
Triangle read by rows: T(0,0)=1; T(n,k) is the coefficient of x^(n-k) in the monic characteristic polynomial of the n X n matrix (min(i,j)) (i,j=1,2,...,n) (0 <= k <= n, n >= 1).
Original entry on oeis.org
1, 1, -1, 1, -3, 1, 1, -6, 5, -1, 1, -10, 15, -7, 1, 1, -15, 35, -28, 9, -1, 1, -21, 70, -84, 45, -11, 1, 1, -28, 126, -210, 165, -66, 13, -1, 1, -36, 210, -462, 495, -286, 91, -15, 1, 1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 1, -66, 715, -3003, 6435, -8008
Offset: 0
Triangular sequence (gives the odd Tutte-Beraha constants as roots!) begins:
1;
1, -1;
1, -3, 1;
1, -6, 5, -1;
1, -10, 15, -7, 1;
1, -15, 35, -28, 9, -1;
1, -21, 70, -84, 45, -11, 1;
1, -28, 126, -210, 165, -66, 13, -1;
1, -36, 210, -462, 495, -286, 91, -15, 1;
1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1;
...
- S. Beraha, Infinite non-trivial families of maps and chromials, Ph.D. thesis. Baltimore, MD: Johns Hopkins University, 1975.
- Steven R. Finch, Mathematical Constants (Encyclopedia of Mathematics and its Applications), chapter 5.25.
- W. T. Tutte, "More about Chromatic Polynomials and the Golden Ratio." In Combinatorial Structures and their Applications: Proc. Calgary Internat. Conf., Calgary, Alberta, 1969. New York: Gordon and Breach, p. 439, 1969.
Modulo signs, inverse matrix to
A039599.
-
/* As triangle */ [[(-1)^k*Binomial(n + k, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 04 2019
-
with(linalg): m:=(i,j)->min(i,j): M:=n->matrix(n,n,m): T:=(n,k)->coeff(charpoly(M(n),x),x,n-k): 1; for n from 1 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
An[d_] := MatrixPower[Table[Min[n, m], {n, 1, d}, {m, 1, d}], -1]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]
A202672
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A087062 based on (1,1,1,1,...); by antidiagonals.
Original entry on oeis.org
1, -1, 1, -3, 1, 1, -5, 6, -1, 1, -7, 15, -10, 1, 1, -9, 28, -35, 15, -1, 1, -11, 45, -84, 70, -21, 1, 1, -13, 66, -165, 210, -126, 28, -1, 1, -15, 91, -286, 495, -462, 210, -36, 1, 1, -17, 120, -455, 1001, -1287, 924, -330, 45, -1, 1, -19, 153
Offset: 1
The 1st principal submatrix (ps) of A087062 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2)=1-3x+x^2 and zero-set {0.381..., 2.618...}.
...
The 3rd ps is {{1,1,1},{1,2,2},{1,2,3}}, with p(3)=1-5x+6x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
...
Top of the array:
1...-1
1...-3....1
1...-5....6....-1
1...-7...15...-10....1
1...-9...28...-35...15...-1
-
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[1, {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
Table[(F[k] /. x -> -2), {k, 1, 30}] (* A007583 *)
Table[(F[k] /. x -> 2), {k, 1, 30}] (* A087168 *)
Original entry on oeis.org
1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 1
-
[(&*[Binomial(2*n-k,k): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
-
(* First program *)
f[j_]:= j; z = 16;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
d[n_]:= Product[(i-1)!, {i,n}]
Table[v[n], {n,z}] (* A093883 *)
Table[v[n+1]/v[n], {n,z-1}] (* A006963 *)
Table[v[n]/d[n], {n,20}] (* A203469 *)
(* Second program *)
Table[Product[Binomial[2*n-j,j], {j,n}], {n,20}] (* G. C. Greubel, Aug 29 2023 *)
-
[product(binomial(2*n-j,j) for j in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023
A203989
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of {max(i,j)} (A051125).
Original entry on oeis.org
1, -1, -2, -3, 1, 3, 11, 6, -1, -4, -23, -35, -10, 1, 5, 39, 98, 85, 15, -1, -6, -59, -207, -308, -175, -21, 1, 7, 83, 374, 795, 798, 322, 28, -1, -8, -111, -611, -1694, -2475, -1806, -546, -36, 1, 9, 143, 930, 3185, 6149, 6633, 3696, 870, 45
Offset: 1
Top of the array:
1... -1
-2... -3.... 1
3.... 11... 6... -1
-4... -23.. -35.. -10...1
5.... 39... 98... 85...15.. -1
- (For references regarding interlacing roots, see A202605.)
-
f[i_, j_] := Max[i, j];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[6]] (* 6th principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A051125 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A203989 *)
TableForm[Table[c[n], {n, 1, 10}]]
A122073
Triangular array from Steinbach matrices plus their squares as characteristic polynomials: M[i,j]=A[i,j]+A[i,j]^2: A[i,j]^2=Min[i,j]; CharacteristicPolynomial[M[i,j]];.
Original entry on oeis.org
1, 2, -1, 0, -4, 1, 2, -9, 8, -1, -2, -3, 19, -12, 1, -4, -6, 47, -55, 18, -1, 2, 15, 0, -88, 93, -24, 1, 2, 23, -7, -190, 324, -182, 32, -1, 0, -12, -63, 62, 332, -554, 274, -40, 1, 2, -9, -108, 133, 678, -1642, 1346, -450, 50, -1, -2, -11, 55, 276, -463, -1129, 2832, -2128, 630, -60, 1, -4, -30, 71, 543, -1044, -2204, 7761
Offset: 1
{1},
{2, -1},
{0, -4, 1},
{2, -9, 8, -1},
{-2, -3, 19, -12, 1},
{-4, -6,47, -55, 18, -1}
{2, 15, 0, -88, 93, -24, 1},
{2, 23, -7, -190, 324, -182, 32, -1},
{0, -12, -63, 62, 332, -554, 274, -40, 1}
-
An[d_] := Table[Min[n, m] + If[n + m - 1 > d, 0, 1], {n, 1, d}, {m, 1, d}]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d,1, 20}]]; Flatten[%]
Showing 1-6 of 6 results.
Comments