A076773 2-nadirs of phi: numbers k such that phi(k-2) > phi(k-1) > phi(k) < phi(k+1) < phi(k+2).
315, 525, 735, 1155, 1365, 1575, 1755, 1785, 1815, 1995, 2145, 2415, 2475, 2805, 3045, 3315, 3465, 3885, 4095, 4125, 4305, 4515, 4725, 4935, 5115, 5145, 5355, 5775, 6045, 6195, 6405, 6435, 6615, 6825, 7035, 7095, 7245, 7395, 7455, 7605, 7665, 8085
Offset: 1
Keywords
Examples
phi(313), ..., phi(317) equal 312, 156, 144, 156, 316, respectively, so 315 is a 2-nadir of phi(n).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from G. C. Greubel)
Programs
-
Magma
eu:=EulerPhi; f:=func
; f1:= func ; [k:k in [3..8100]|f(k) and f1(k)]; // Marius A. Burtea, Feb 19 2020 -
Mathematica
Select[Range[3, 10^4], EulerPhi[#-2] > EulerPhi[#-1] > EulerPhi[#] < EulerPhi[#+1] < EulerPhi[#+2] &]
-
Sage
[n for n in (3..9000) if euler_phi(n-2) > euler_phi(n-1) > euler_phi(n) < euler_phi(n+1) < euler_phi(n+2)] # G. C. Greubel, Feb 27 2019
Comments