cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076811 Number of n X n matrices over an alphabet of size 13.

Original entry on oeis.org

1, 13, 28561, 10604499373, 665416609183179841, 7056410014866816666030739693, 12646218552730347184269489080961456410641, 3830224792147131369362629348887201408953937846517364173
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 19 2002

Keywords

Comments

a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over an alphabet of size k.

Crossrefs

Programs

Formula

a(n) = 13^(n^2).

A135314 a(n) = 7^n*6^(n^2).

Original entry on oeis.org

1, 42, 63504, 3456649728, 6773484887801856, 477827850919028491026432, 1213481763117613016471583634489344, 110942398014527364799038852663129544775958528
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2007

Keywords

Comments

Hankel transform of A130978.

Programs

Formula

a(n) = 7^n*6^(n^2) = A000420(n)*A076781(n).

A135421 a(n) = 5^n*6^(n^2).

Original entry on oeis.org

1, 30, 32400, 1259712000, 1763193692160000, 88844650093530316800000, 161162887476414617908936704000000, 10524495800322448706290880214277816320000000, 24742299477723936603969643338598393206990805401600000000
Offset: 0

Views

Author

Philippe Deléham, Dec 11 2007

Keywords

Comments

Hankel transform of A132865.

Programs

Formula

a(n) = 5^n*6^(n^2) = A000351(n)*A076781(n).
Showing 1-3 of 3 results.