cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076809 a(n) = n^4 + 853n^3 + 2636n^2 + 3536n + 1753.

Original entry on oeis.org

1753, 8779, 26209, 59197, 112921, 192583, 303409, 450649, 639577, 875491, 1163713, 1509589, 1918489, 2395807, 2946961, 3577393, 4292569, 5097979, 5999137, 7001581, 8110873, 9332599, 10672369, 12135817, 13728601, 15456403, 17324929, 19339909, 21507097, 23832271, 26321233, 28979809, 31813849, 34829227
Offset: 0

Views

Author

Hilko Koning (hilko(AT)hilko.net), Nov 18 2002

Keywords

Comments

A prime-generating quartic polynomial.
For n=0 ... 20, the terms in this sequence are primes. This is not the case for n=21. See A272325 and A272326. - Robert Price, Apr 25 2016

Crossrefs

Programs

  • Maple
    A076809:=n->n^4 + 853*n^3 + 2636*n^2 + 3536*n + 1753; seq(A076809(n), n=0..100); # Wesley Ivan Hurt, Nov 13 2013
  • Mathematica
    Table[n^4 + 853n^3 + 2636n^2 + 3536n + 1753, {n,0,100}] (* Wesley Ivan Hurt, Nov 13 2013 *)
    CoefficientList[Series[-(x^4 - 1588 x^3 - 156 x^2 + 14 x + 1753)/(x - 1)^5, {x, 0, 33}], x] (* Michael De Vlieger, Apr 25 2016 *)
    LinearRecurrence[{5,-10,10,-5,1},{1753,8779,26209,59197,112921},40] (* Harvey P. Dale, Jan 20 2025 *)
  • Maxima
    A076809(n):=n^4 + 853*n^3 + 2636*n^2 + 3536*n + 1753$
    makelist(A076809(n),n,0,30); /* Martin Ettl, Nov 08 2012 */

Formula

G.f.: -(x^4-1588*x^3-156*x^2+14*x+1753)/(x- 1)^5. [Colin Barker, Nov 11 2012]
E.g.f.: (1753 + 7026*x + 5202*x^2 + 859*x^3 + x^4)*exp(x). - Ilya Gutkovskiy, Apr 25 2016

Extensions

More terms from Michael De Vlieger, Apr 25 2016