A076813 Decimal expansion of Sum_{k>=1} zeta(2k)/k! = 2.40744...
2, 4, 0, 7, 4, 4, 6, 5, 5, 4, 7, 9, 0, 3, 2, 8, 5, 1, 4, 7, 0, 9, 4, 8, 6, 6, 5, 6, 2, 2, 3, 0, 2, 2, 7, 2, 5, 5, 8, 2, 2, 6, 6, 4, 9, 0, 3, 7, 9, 8, 4, 4, 1, 8, 8, 6, 9, 3, 3, 9, 8, 3, 3, 3, 5, 5, 7, 0, 4, 7, 0, 2, 8, 1, 3, 7, 0, 7, 2, 2, 3, 5, 6, 9, 1, 5, 9, 0, 3, 0, 1, 2, 6, 6, 3, 5, 2, 1, 5, 6, 7, 7
Offset: 1
Examples
2.40744655479032851470948665622302272558226649037984418869339833...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function
Programs
-
Maple
evalf(Sum(exp(1/n^2)-1, n=1..infinity), 120); # Vaclav Kotesovec, Mar 04 2016
-
Mathematica
rd[k_] := rd[k] = RealDigits[ N[ Sum[ Zeta[2n]/n!, {n, 1, 2^k}], 105]][[1]][[1 ;; 102]]; rd[k = 4]; While[ rd[k] != rd[k-1], k++]; rd[k] (* Jean-François Alcover, Oct 29 2012 *)
-
PARI
suminf(n=1, zeta(2*n)/n!) \\ Michel Marcus, Mar 20 2017