cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A093720 Decimal expansion of Sum_{n >= 2} zeta(n)/n!.

Original entry on oeis.org

1, 0, 7, 8, 1, 8, 8, 7, 2, 9, 5, 7, 5, 8, 1, 8, 4, 8, 2, 7, 5, 8, 2, 6, 5, 4, 3, 6, 7, 6, 9, 8, 3, 2, 3, 8, 1, 7, 0, 7, 2, 1, 9, 6, 0, 9, 6, 7, 2, 3, 4, 7, 1, 6, 0, 0, 3, 7, 1, 7, 0, 2, 0, 7, 8, 0, 0, 7, 1, 5, 2, 3, 0, 0, 3, 2, 7, 8, 4, 3, 4, 8, 6, 5, 6, 7, 6, 7, 6, 8, 0, 8, 8, 5, 8, 2, 9, 0, 1
Offset: 1

Views

Author

Eric W. Weisstein, Apr 12 2004

Keywords

Examples

			1.078188729575818482758265436769832381707219...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(exp(1/n)-1-1/n, n=1..infinity), 120); # Vaclav Kotesovec, Mar 04 2016
  • Mathematica
    digits = 99; ClearAll[z, rd]; z[k_] := z[k] = z[k-1] + N[Sum[Zeta[n]/n!, {n, 2^(k-1) + 1, 2^k}], digits]; z[0] = 0; rd[k_] := rd[k] = RealDigits[z[k]][[1]]; rd[0]; rd[k = 1]; While[ rd[k] != rd[k-1], k++]; rd[k] (* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    suminf(n=2, zeta(n)/n!) \\ Michel Marcus, Mar 15 2017

Formula

Equals Sum_{k>=1} (exp(1/k) - 1 - 1/k). - Vaclav Kotesovec, Mar 04 2016
Equals Integral_{x=0..oo} exp(1/(x^2 + 1))*sin(x/(x^2 + 1))*(coth(Pi*x) - 1) dx + A091725 - 2*A001620 - exp(1)/2 + 3/2. - Velin Yanev, Nov 14 2024

Extensions

Corrected by Fredrik Johansson, Mar 19 2006

A080729 Decimal expansion of the infinite product of zeta functions for even arguments.

Original entry on oeis.org

1, 8, 2, 1, 0, 1, 7, 4, 5, 1, 4, 9, 9, 2, 9, 2, 3, 9, 0, 4, 0, 6, 7, 2, 5, 1, 3, 2, 2, 2, 6, 0, 0, 6, 8, 4, 8, 5, 7, 8, 2, 6, 8, 0, 2, 8, 6, 4, 8, 2, 7, 1, 7, 5, 5, 0, 0, 2, 0, 9, 3, 8, 0, 0, 2, 8, 6, 0, 6, 5, 8, 8, 6, 7, 7, 0, 5, 4, 8, 8, 9, 3, 6, 3, 9, 6, 0, 2, 4, 9, 7, 5, 2, 1, 4, 5, 2, 9, 7, 6, 6, 1, 0, 9, 9
Offset: 1

Views

Author

Deepak R. N (deepak_rn(AT)safe-mail.net), Mar 08 2003

Keywords

Comments

By elementary estimates, the constant lies in the open interval (Pi/6, exp(3/4)). - Bernd C. Kellner, May 18 2024

Examples

			1.82101745149929239040672513222600684857...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Product[Zeta[2n],{n,500}],10,110][[1]] (* Harvey P. Dale, Jan 31 2012 *)
  • PARI
    prodinf(k=1, zeta(2*k)) \\ Vaclav Kotesovec, Jan 29 2024

Formula

Decimal expansion of zeta(2)*zeta(4)*...*zeta(2k)*...
If u(k) denotes the number of Abelian groups with group order k (A000688), then Product_{k>=1} zeta(2*k) = Sum_{k>=1} u(k)/k^2. - Benoit Cloitre, Jun 25 2003
Equals A021002/A080730. - Amiram Eldar, Jan 31 2024
This constant C is connected with the product of values of the Dedekind eta function on the upper imaginary axis. The product runs over the primes, where i is the imaginary unit: 1/C = Product_{prime p} (p^(1/12) * eta(i * log(p) / Pi)). - Bernd C. Kellner, May 18 2024

Extensions

More terms from Benoit Cloitre, Mar 08 2003

A093721 Decimal expansion of Sum_{n>=1} zeta(2n)/(2n)!.

Original entry on oeis.org

8, 6, 9, 0, 0, 1, 9, 9, 1, 9, 6, 2, 9, 0, 8, 9, 9, 8, 8, 1, 1, 0, 5, 4, 8, 0, 5, 5, 6, 1, 3, 9, 5, 6, 8, 8, 8, 9, 2, 4, 9, 4, 8, 4, 1, 8, 8, 0, 5, 7, 7, 8, 5, 0, 7, 1, 0, 6, 4, 5, 7, 7, 8, 5, 6, 0, 6, 7, 4, 6, 0, 9, 5, 5, 4, 2, 5, 8, 0, 1, 3, 5, 8, 7, 6, 7, 1, 9, 6, 4, 5, 9, 3, 3, 5, 3, 8, 1, 1, 8, 0, 9
Offset: 0

Views

Author

Eric W. Weisstein, Apr 12 2004

Keywords

Examples

			0.86900199196290899881105480556139568889249484188057785071064577856...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(cosh(1/n)-1, n=1..infinity), 120); # Vaclav Kotesovec, Mar 04 2016
  • Mathematica
    digits = 105; z[k_] := z[k] = z[k-1] + N[Sum[Zeta[2n]/(2n)!, {n, 2^(k-1) + 1, 2^k}], digits]; z[0] = N[Pi^2/12, digits]; rd[k_] := rd[k] = RealDigits[z[k]][[1]]; rd[0]; rd[k = 1]; While[rd[k] != rd[k-1], k++]; rd[k] (* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    suminf(n=1, zeta(2*n)/(2*n)!) \\ Michel Marcus, Mar 20 2017

Formula

Equals Sum_{k>=1} (cosh(1/k) - 1). - Vaclav Kotesovec, Mar 04 2016

A084862 Continued fraction expansion of Sum_{n>=1} zeta( 2*n ) / n!.

Original entry on oeis.org

2, 2, 2, 4, 1, 34, 4, 2, 3, 5, 1, 33, 2, 3, 1, 1, 12, 1, 20, 1, 9, 1, 2, 1, 4, 3, 1, 13, 1, 1, 2, 3, 1, 1, 8, 6, 1, 1, 3, 42, 1, 94, 1, 4, 2, 1, 1, 1, 7, 1, 1, 1, 16, 1, 25, 2, 1, 1, 29, 2, 3, 2, 3, 10, 6, 2, 1, 1, 1, 2, 1, 4, 2, 132, 1, 3, 1, 2, 8, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 45, 1, 2, 1, 5
Offset: 0

Views

Author

Frank Ellermann, Jul 13 2003

Keywords

Examples

			2.40744655479032851470948665622302272558226649037984418869339833...
		

Crossrefs

Decimal expansion is in A076813.

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024
Showing 1-4 of 4 results.