cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000688 Number of Abelian groups of order n; number of factorizations of n into prime powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Equivalently, number of Abelian groups with n conjugacy classes. - Michael Somos, Aug 10 2010
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
Also number of rings with n elements that are the direct product of fields; these are the commutative rings with n elements having no nilpotents; likewise the commutative rings where for every element x there is a k > 0 such that x^(k+1) = x. - Franklin T. Adams-Watters, Oct 20 2006
Range is A033637.
a(n) = 1 if and only if n is from A005117 (squarefree numbers). See the Ahmed Fares comment there, and the formula for n>=2 below. - Wolfdieter Lang, Sep 09 2012
Also, from a theorem of Molnár (see [Molnár]), the number of (non-isomorphic) abelian groups of order 2*n + 1 is equal to the number of non-congruent lattice Z-tilings of R^n by crosses, where a "cross" is a unit cube in R^n for which at each facet is attached another unit cube (Z, R are the integers and reals, respectively). (Cf. [Horak].) - L. Edson Jeffery, Nov 29 2012
Zeta(k*s) is the Dirichlet generating function of the characteristic function of numbers which are k-th powers (k=1 in A000012, k=2 in A010052, k=3 in A010057, see arXiv:1106.4038 Section 3.1). The infinite product over k (here) is the number of representations n=product_i (b_i)^(e_i) where all exponents e_i are distinct and >=1. Examples: a(n=4)=2: 4^1 = 2^2. a(n=8)=3: 8^1 = 2^1*2^2 = 2^3. a(n=9)=2: 9^1 = 3^2. a(n=12)=2: 12^1 = 3*2^2. a(n=16)=5: 16^1 = 2*2^3 = 4^2 = 2^2*4^1 = 2^4. If the e_i are the set {1,2} we get A046951, the number of representations as a product of a number and a square. - R. J. Mathar, Nov 05 2016
See A060689 for the number of non-abelian groups of order n. - M. F. Hasler, Oct 24 2017
Kendall & Rankin prove that the density of {n: a(n) = m} exists for each m. - Charles R Greathouse IV, Jul 14 2024

Examples

			a(1) = 1 since the trivial group {e} is the only group of order 1, and it is Abelian; alternatively, since the only factorization of 1 into prime powers is the empty product.
a(p) = 1 for any prime p, since the only factorization into prime powers is p = p^1, and (in view of Lagrange's theorem) there is only one group of prime order p; it is isomorphic to (Z/pZ,+) and thus Abelian.
From _Wolfdieter Lang_, Jul 22 2011: (Start)
a(8) = 3 because 8 = 2^3, hence a(8) = pa(3) = A000041(3) = 3 from the partitions (3), (2, 1) and (1, 1, 1), leading to the 3 factorizations of 8: 8, 4*2 and 2*2*2.
a(36) = 4 because 36 = 2^2*3^2, hence a(36) = pa(2)*pa(2) = 4 from the partitions (2) and (1, 1), leading to the 4 factorizations of 36: 2^2*3^2, 2^2*3^1*3^1, 2^1*2^1*3^2 and 2^1*2^1*3^1*3^1.
(End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 274-278.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.12, p. 468.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 4. Auflage, Birkhäuser, 1956.

Crossrefs

Cf. A080729 (Dgf at s=2), A369634 (Dgf at s=3).

Programs

  • Haskell
    a000688 = product . map a000041 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    with(combinat): readlib(ifactors): for n from 1 to 120 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,ans): od: # James Sellers, Dec 07 2000
  • Mathematica
    f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; Array[f, 107] (* Robert G. Wilson v, Sep 22 2006 *)
    Table[FiniteAbelianGroupCount[n], {n, 200}] (* Requires version 7.0 or later. - Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
  • PARI
    A000688(n)=local(f);f=factor(n);prod(i=1,matsize(f)[1],numbpart(f[i,2])) \\ Michael B. Porter, Feb 08 2010
    
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,numbpart(f[i])) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    from sympy import factorint, npartitions
    from math import prod
    def A000688(n): return prod(map(npartitions,factorint(n).values())) # Chai Wah Wu, Jan 14 2022
  • Sage
    def a(n):
        F=factor(n)
        return prod([number_of_partitions(F[i][1]) for i in range(len(F))])
    # Ralf Stephan, Jun 21 2014
    

Formula

Multiplicative with a(p^k) = number of partitions of k = A000041(k); a(mn) = a(m)a(n) if (m, n) = 1.
a(2n) = A101872(n).
a(n) = Product_{j = 1..N(n)} A000041(e(j)), n >= 2, if
n = Product_{j = 1..N(n)} prime(j)^e(j), N(n) = A001221(n). See the Richert reference, quoting A. Speiser's book on finite groups (in German, p. 51 in words). - Wolfdieter Lang, Jul 23 2011
In terms of the cycle index of the symmetric group: Product_{q=1..m} [z^{v_q}] Z(S_v) 1/(1-z) where v is the maximum exponent of any prime in the prime factorization of n, v_q are the exponents of the prime factors, and Z(S_v) is the cycle index of the symmetric group on v elements. - Marko Riedel, Oct 03 2014
Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = Product_{k >= 1} zeta(ks) [Kendall]. - Álvar Ibeas, Nov 05 2014
a(n)=2 for all n in A054753 and for all n in A085987. a(n)=3 for all n in A030078 and for all n in A065036. a(n)=4 for all n in A085986. a(n)=5 for all n in A030514 and for all n in A178739. a(n)=6 for all n in A143610. - R. J. Mathar, Nov 05 2016
A050360(n) = a(A025487(n)). a(n) = A050360(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = A000001(n) - A060689(n). - M. F. Hasler, Oct 24 2017
From Amiram Eldar, Nov 01 2020: (Start)
a(n) = a(A057521(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A021002. (End)
a(n) = A005361(n) except when n is a term of A046101, since A000041(x) = x for x <= 3. - Miles Englezou, Feb 17 2024
Inverse Moebius transform of A188585: a(n) = Sum_{d|n} A188585(d). - Amiram Eldar, Jun 10 2025

A021002 Decimal expansion of zeta(2)*zeta(3)*zeta(4)*...

Original entry on oeis.org

2, 2, 9, 4, 8, 5, 6, 5, 9, 1, 6, 7, 3, 3, 1, 3, 7, 9, 4, 1, 8, 3, 5, 1, 5, 8, 3, 1, 3, 4, 4, 3, 1, 1, 2, 8, 8, 7, 1, 3, 1, 6, 3, 7, 9, 9, 4, 4, 1, 6, 6, 8, 6, 7, 3, 2, 7, 5, 8, 1, 4, 0, 3, 0, 0, 0, 1, 3, 9, 7, 0, 1, 2, 0, 1, 1, 3, 2, 3, 1, 5, 7, 5, 0, 1, 7, 9, 6, 8, 0, 4, 5, 2, 3, 2, 7, 2, 4, 9, 0, 8, 1, 3, 8, 4
Offset: 1

Views

Author

Andre Neumann Kauffman (ank(AT)nlink.com.br)

Keywords

Comments

A very good approximation is 2e-Pi = ~2.29497100332829723225793155942... - Marco Matosic, Nov 16 2005
This constant is equal to the asymptotic mean of number of Abelian groups of order n (A000688). - Amiram Eldar, Oct 16 2020

Examples

			2.2948565916733137941835158313443112887131637994416686732758140300...
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963, p. 198-9.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A068982 (reciprocal), A082868 (continued fraction).

Programs

  • Maple
    evalf(product(Zeta(n), n=2..infinity), 200);
  • Mathematica
    p = Product[ N[ Zeta[n], 256], {n, 2, 1000}]; RealDigits[p, 10, 111][[1]] (* Robert G. Wilson v, Nov 22 2005 *)
  • PARI
    prodinf(n=2,zeta(n)) \\ Charles R Greathouse IV, May 27 2015

Formula

Product of A080729 and A080730. - R. J. Mathar, Feb 16 2011

Extensions

More terms from Simon Plouffe, Jan 07 2002
Further terms from Robert G. Wilson v, Nov 22 2005
Mathematica program fixed by Vaclav Kotesovec, Sep 20 2014

A080730 Decimal expansion of the infinite product of zeta functions for odd arguments >= 3.

Original entry on oeis.org

1, 2, 6, 0, 2, 0, 5, 7, 1, 0, 7, 0, 5, 2, 4, 1, 7, 1, 0, 7, 6, 7, 8, 1, 7, 2, 2, 6, 0, 0, 2, 4, 1, 0, 6, 2, 8, 0, 3, 4, 3, 7, 9, 8, 6, 4, 0, 8, 4, 9, 4, 9, 6, 4, 0, 3, 7, 7, 1, 5, 3, 0, 1, 3, 9, 3, 0, 6, 3, 2, 4, 8, 8, 4, 2, 9, 8, 0, 4, 3, 1, 5, 6, 6, 8, 6, 5, 0, 0, 9, 6, 4, 1, 1, 6, 3, 4, 7, 3, 4, 4, 8, 5, 8, 8
Offset: 1

Views

Author

Deepak R. N (deepak_rn(AT)safe-mail.net), Mar 08 2003

Keywords

Examples

			1.2602057107052417107678172260024106280343...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Product[ Zeta[ 2n + 1], {n, 500}], 10, 110][[1]] (* Robert G. Wilson v, Nov 21 2014 *)
  • PARI
    prodinf(x=1, zeta(2*x+1)) \\ Michel Marcus, Nov 22 2014

Formula

Decimal expansion of zeta(3)*zeta(5)*zeta(7)*...*zeta(2k+1)*...
Equals A021002/A080729. - Amiram Eldar, Jan 31 2024

Extensions

More terms from Benoit Cloitre, Mar 08 2003

A369634 Decimal expansion of the infinite product of the Zeta Functions with arguments that are multiples of 3.

Original entry on oeis.org

1, 2, 2, 5, 7, 0, 4, 7, 0, 5, 1, 2, 8, 4, 9, 7, 4, 0, 9, 5, 2, 0, 4, 5, 7, 6, 7, 1, 5, 8, 8, 9, 7, 4, 4, 8, 2, 4, 8, 9, 9, 3, 3, 8, 4, 2, 2, 3, 2, 2, 4, 5, 5, 9, 6, 6, 7, 6, 2, 6, 9, 2, 8, 7, 0, 1, 1, 9, 1, 8, 0, 9, 1, 8, 3, 7, 3, 5, 5, 4, 9, 5, 3, 0, 7, 6, 9, 9, 5, 6, 1, 0, 4, 2, 7, 1, 3, 1, 4, 9, 7, 3, 6, 7, 8
Offset: 1

Views

Author

R. J. Mathar, Jan 28 2024

Keywords

Comments

Dirichlet generating function of A000688 evaluated at s=3.

Examples

			1.22570470512849740952045767158897448248993384223224...
		

Crossrefs

Programs

  • Maple
    evalf(product(Zeta(3*k), k = 1 .. infinity), 120) # Amiram Eldar, Jan 28 2024
  • PARI
    prodinf(k=1,zeta(3*k)) \\ Amiram Eldar, Jan 28 2024

Formula

Equals Product_{k>=1} zeta(3*k) = A002117 * A013664 * A013667 * A013670 *...

A355978 Decimal expansion of Product_{k>=1} zeta(Prime(k)).

Original entry on oeis.org

2, 0, 6, 8, 7, 3, 5, 9, 9, 7, 9, 7, 1, 6, 5, 8, 3, 3, 7, 8, 6, 3, 6, 2, 1, 9, 8, 0, 9, 9, 4, 0, 4, 9, 2, 8, 3, 4, 1, 3, 4, 0, 7, 4, 9, 8, 8, 9, 7, 6, 7, 9, 6, 7, 7, 1, 2, 9, 8, 0, 7, 2, 5, 1, 9, 9, 7, 3, 6, 3, 9, 8, 7, 2, 4, 8, 4, 7, 5, 8, 1, 5, 9, 5, 4, 0, 9, 9, 5, 5, 8, 1, 7, 4, 0, 2, 4, 1, 7, 1, 6, 2, 4, 9, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 22 2022

Keywords

Examples

			2.06873599797165833786362198099404928341340749889767...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Product[Zeta[Prime[n]], {n, 1, 100}], 10, 100][[1]]

Formula

Equals Product_{m,n>=1} 1/(1-prime(n)^(-prime(m))) = Product_{m>=1} 1/(1-1/A053810(m)).
Showing 1-5 of 5 results.