cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A000688 Number of Abelian groups of order n; number of factorizations of n into prime powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Equivalently, number of Abelian groups with n conjugacy classes. - Michael Somos, Aug 10 2010
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
Also number of rings with n elements that are the direct product of fields; these are the commutative rings with n elements having no nilpotents; likewise the commutative rings where for every element x there is a k > 0 such that x^(k+1) = x. - Franklin T. Adams-Watters, Oct 20 2006
Range is A033637.
a(n) = 1 if and only if n is from A005117 (squarefree numbers). See the Ahmed Fares comment there, and the formula for n>=2 below. - Wolfdieter Lang, Sep 09 2012
Also, from a theorem of Molnár (see [Molnár]), the number of (non-isomorphic) abelian groups of order 2*n + 1 is equal to the number of non-congruent lattice Z-tilings of R^n by crosses, where a "cross" is a unit cube in R^n for which at each facet is attached another unit cube (Z, R are the integers and reals, respectively). (Cf. [Horak].) - L. Edson Jeffery, Nov 29 2012
Zeta(k*s) is the Dirichlet generating function of the characteristic function of numbers which are k-th powers (k=1 in A000012, k=2 in A010052, k=3 in A010057, see arXiv:1106.4038 Section 3.1). The infinite product over k (here) is the number of representations n=product_i (b_i)^(e_i) where all exponents e_i are distinct and >=1. Examples: a(n=4)=2: 4^1 = 2^2. a(n=8)=3: 8^1 = 2^1*2^2 = 2^3. a(n=9)=2: 9^1 = 3^2. a(n=12)=2: 12^1 = 3*2^2. a(n=16)=5: 16^1 = 2*2^3 = 4^2 = 2^2*4^1 = 2^4. If the e_i are the set {1,2} we get A046951, the number of representations as a product of a number and a square. - R. J. Mathar, Nov 05 2016
See A060689 for the number of non-abelian groups of order n. - M. F. Hasler, Oct 24 2017
Kendall & Rankin prove that the density of {n: a(n) = m} exists for each m. - Charles R Greathouse IV, Jul 14 2024

Examples

			a(1) = 1 since the trivial group {e} is the only group of order 1, and it is Abelian; alternatively, since the only factorization of 1 into prime powers is the empty product.
a(p) = 1 for any prime p, since the only factorization into prime powers is p = p^1, and (in view of Lagrange's theorem) there is only one group of prime order p; it is isomorphic to (Z/pZ,+) and thus Abelian.
From _Wolfdieter Lang_, Jul 22 2011: (Start)
a(8) = 3 because 8 = 2^3, hence a(8) = pa(3) = A000041(3) = 3 from the partitions (3), (2, 1) and (1, 1, 1), leading to the 3 factorizations of 8: 8, 4*2 and 2*2*2.
a(36) = 4 because 36 = 2^2*3^2, hence a(36) = pa(2)*pa(2) = 4 from the partitions (2) and (1, 1), leading to the 4 factorizations of 36: 2^2*3^2, 2^2*3^1*3^1, 2^1*2^1*3^2 and 2^1*2^1*3^1*3^1.
(End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 274-278.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.12, p. 468.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 4. Auflage, Birkhäuser, 1956.

Crossrefs

Cf. A080729 (Dgf at s=2), A369634 (Dgf at s=3).

Programs

  • Haskell
    a000688 = product . map a000041 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    with(combinat): readlib(ifactors): for n from 1 to 120 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,ans): od: # James Sellers, Dec 07 2000
  • Mathematica
    f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; Array[f, 107] (* Robert G. Wilson v, Sep 22 2006 *)
    Table[FiniteAbelianGroupCount[n], {n, 200}] (* Requires version 7.0 or later. - Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
  • PARI
    A000688(n)=local(f);f=factor(n);prod(i=1,matsize(f)[1],numbpart(f[i,2])) \\ Michael B. Porter, Feb 08 2010
    
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,numbpart(f[i])) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    from sympy import factorint, npartitions
    from math import prod
    def A000688(n): return prod(map(npartitions,factorint(n).values())) # Chai Wah Wu, Jan 14 2022
  • Sage
    def a(n):
        F=factor(n)
        return prod([number_of_partitions(F[i][1]) for i in range(len(F))])
    # Ralf Stephan, Jun 21 2014
    

Formula

Multiplicative with a(p^k) = number of partitions of k = A000041(k); a(mn) = a(m)a(n) if (m, n) = 1.
a(2n) = A101872(n).
a(n) = Product_{j = 1..N(n)} A000041(e(j)), n >= 2, if
n = Product_{j = 1..N(n)} prime(j)^e(j), N(n) = A001221(n). See the Richert reference, quoting A. Speiser's book on finite groups (in German, p. 51 in words). - Wolfdieter Lang, Jul 23 2011
In terms of the cycle index of the symmetric group: Product_{q=1..m} [z^{v_q}] Z(S_v) 1/(1-z) where v is the maximum exponent of any prime in the prime factorization of n, v_q are the exponents of the prime factors, and Z(S_v) is the cycle index of the symmetric group on v elements. - Marko Riedel, Oct 03 2014
Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = Product_{k >= 1} zeta(ks) [Kendall]. - Álvar Ibeas, Nov 05 2014
a(n)=2 for all n in A054753 and for all n in A085987. a(n)=3 for all n in A030078 and for all n in A065036. a(n)=4 for all n in A085986. a(n)=5 for all n in A030514 and for all n in A178739. a(n)=6 for all n in A143610. - R. J. Mathar, Nov 05 2016
A050360(n) = a(A025487(n)). a(n) = A050360(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = A000001(n) - A060689(n). - M. F. Hasler, Oct 24 2017
From Amiram Eldar, Nov 01 2020: (Start)
a(n) = a(A057521(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A021002. (End)
a(n) = A005361(n) except when n is a term of A046101, since A000041(x) = x for x <= 3. - Miles Englezou, Feb 17 2024
Inverse Moebius transform of A188585: a(n) = Sum_{d|n} A188585(d). - Amiram Eldar, Jun 10 2025

A063966 Number of Abelian groups of order <= n.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 15, 17, 18, 19, 20, 25, 26, 28, 29, 31, 32, 33, 34, 37, 39, 40, 43, 45, 46, 47, 48, 55, 56, 57, 58, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 76, 77, 82, 84, 86, 87, 89, 90, 93, 94, 97, 98, 99, 100, 102, 103, 104, 106, 117, 118, 119, 120, 122
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Sep 04 2001

Keywords

Crossrefs

Partial sums of A000688.
Cf. A063756.

Programs

  • Maple
    with(combinat): readlib(ifactors): total := 0: for n from 1 to 100 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,total+ans): total := total+ans: od:
  • Mathematica
    Accumulate[Table[FiniteAbelianGroupCount[n], {n, 1, 200}]] (* Geoffrey Critzer, Dec 28 2014 *)

Formula

a(n) ~ c * n, where c = A021002 = Product_{k>=2} zeta(k). - Vaclav Kotesovec, Oct 26 2019
More accurately, a(n) = A021002 * n + A084892 * n^(1/2) + A084893 * n^(1/3) + O(n^(50/199 + eps)), where eps>0 is arbitrarily small (Liu, 1993). - Amiram Eldar, Sep 23 2023

Extensions

More terms from James Sellers, Sep 26 2001

A085846 Decimal expansion of root of x = (1+1/x)^x.

Original entry on oeis.org

2, 2, 9, 3, 1, 6, 6, 2, 8, 7, 4, 1, 1, 8, 6, 1, 0, 3, 1, 5, 0, 8, 0, 2, 8, 2, 9, 1, 2, 5, 0, 8, 0, 5, 8, 6, 4, 3, 7, 2, 2, 5, 7, 2, 9, 0, 3, 2, 7, 1, 2, 1, 2, 4, 8, 5, 3, 7, 7, 1, 0, 3, 9, 6, 1, 6, 8, 5, 0, 6, 4, 8, 8, 0, 0, 9, 1, 5, 7, 7, 4, 3, 6, 2, 9, 0, 4, 2, 0, 1, 3, 8, 0, 4, 8, 2, 8, 2, 5, 6, 6, 1
Offset: 1

Views

Author

Eric W. Weisstein, Jul 05 2003

Keywords

Comments

Equivalently, the root of x^(x+1) = (x+1)^x.
Also a root of 1/(x^(1/x)-1) - x = 0 and 1/(x^(1/x)-1/x-1) - x = 0, which also contains the root 5.50798565277317825758902... 1/(x^(1/x)-1) ~ Pi(x) and 1/(x^(1/x)-1/x-1) ~ Pi(x), which is a much better approximation. These roots also can be computed by the recurrences x = 1/(x^(1/x)-1) and x = 1/(x^(1/x)-1/x-1). - Cino Hilliard, Sep 13 2008
This constant is transcendental (Lord, 2002). - Amiram Eldar, Oct 29 2022

Examples

			2.2931662874118610315080282912508058643722572903271212485377103961...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FindRoot[x^(1/x) - (x + 1)^(1/(x + 1)) == 0, {x, 2}, WorkingPrecision -> 128][[1, 2]], 10, 111][[1]] (* Robert G. Wilson v *)
  • PARI
    solve(x=2,3,(1+1/x)^x-x) \\ Charles R Greathouse IV, Apr 14 2014

Formula

x satisfies x^(1/x) = (x+1)^(1/(x+1)). - Marco Matosic, Nov 25 2005

A188581 Inverse Moebius transform of A000688, the number of factorizations of n into prime powers greater than 1.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 7, 4, 4, 2, 8, 2, 4, 4, 12, 2, 8, 2, 8, 4, 4, 2, 14, 4, 4, 7, 8, 2, 8, 2, 19, 4, 4, 4, 16, 2, 4, 4, 14, 2, 8, 2, 8, 8, 4, 2, 24, 4, 8, 4, 8, 2, 14, 4, 14, 4, 4, 2, 16, 2, 4, 8, 30, 4, 8, 2, 8, 4, 8, 2, 28, 2, 4, 8, 8, 4, 8, 2, 24, 12, 4, 2, 16, 4, 4, 4, 14, 2, 16
Offset: 1

Views

Author

Marc Bogaerts, Apr 04 2011

Keywords

Examples

			For n=8; the divisors of 8 are 1,2,4,8. There are 1,1,2,3 abelian groups of these orders respectively, so a(n) = 1+1+2+3 = 7.
		

Crossrefs

Programs

  • GAP
    trf:=function ( f, x )  # the Dirichlet convolution 1 * f
        local  d;
        d := DivisorsInt( x );
        return Sum( d, function ( i )
                return f( i );
            end );
    end;
    nra:=function ( x )     # the number of Abelian Groups of order(n)
        local  pp, ll;
        pp := PrimePowersInt( x );
        ll := [ 1 .. Size( pp ) / 2 ];
        return Product( List( 2 * ll, function ( i )
                  return NrPartitions( pp[i] );
              end ) );
    end;
    a:=function ( n )
        return trf( nra, n );
    end;
    
  • Maple
    with(combinat): with(numtheory):
    a:= n-> add(mul(numbpart(i[2]), i=ifactors(d)[2]), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 08 2011
  • Mathematica
    InverseMobiusTransform[a_List] := Module[{n = Length[a], b}, b = Table[0, {i, n}]; Do[b[[i]] = Plus @@ a[[Divisors[i]]], {i, n}]; b]; A688[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; InverseMobiusTransform[Array[A688, 100]] (* T. D. Noe, Apr 07 2011 *)
    f[0] = 1; f[e_] := f[e] = f[e - 1] + PartitionsP[e]; a[1] = 1; a[n_] := Times @@ (f[Last[#]] & /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    A000688(n)={local(f); f=factor(n); prod(i=1, matsize(f)[1], numbpart(f[i, 2]))}
    A188581(n)=sumdiv(n,d,A000688(d))
    r=vector(66,n,A188581(n)) /* show terms */ /* Joerg Arndt, Apr 08 2011 */

Formula

a(n) = Sum_{d | n} A000688(d).
Multiplicative with a(p^e) = A000070(e). - Amiram Eldar, Sep 09 2020
Dirichlet g.f.: zeta(s)^2 * Product_{k>=2} zeta(k*s). - Ilya Gutkovskiy, Nov 03 2020
Sum_{k=1..n} a(k) ~ n*((log(n) + 2*gamma - 1)*f(1) + f'(1)), where f(1) = Product_{k>=2} zeta(k) = A021002 = 2.1955691982567064617939..., f'(1) = f(1) * Sum_{k>=2} k*zeta'(k)/zeta(k) = -5.0385164470942955610707128990779476296197... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 21 2021

A084892 Decimal expansion of Product_{j>=1, j!=2} zeta(j/2) (negated).

Original entry on oeis.org

1, 4, 6, 4, 7, 5, 6, 6, 3, 0, 1, 6, 3, 8, 3, 1, 1, 3, 1, 6, 9, 9, 9, 7, 6, 0, 9, 1, 2, 2, 0, 4, 2, 1, 9, 2, 6, 3, 8, 1, 1, 7, 3, 0, 3, 4, 7, 9, 6, 9, 6, 0, 2, 5, 1, 6, 9, 2, 6, 9, 3, 9, 7, 5, 2, 0, 1, 2, 7, 5, 7, 9, 1, 0, 4, 4, 9, 2, 6, 3, 5, 2, 5, 2, 9, 1, 8, 1, 7, 4, 2, 3, 5, 1, 0, 2, 2, 7, 0, 9, 4, 1
Offset: 2

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Comments

This constant, A_2, appears in the asymptotic formula A063966(n) = Sum_{k=1..n} A000688(k) = A_1 * n + A_2 * n^(1/2) + A_3 * n^(1/3) + O(n^(50/199 + e)), where e>0 is arbitrarily small, A_1 = A021002, and A_3 = A084893. - Amiram Eldar, Oct 16 2020

Examples

			-14.64756630163831131699976...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Programs

  • Mathematica
    m0 = 100; dm = 100; digits = 102; Clear[p]; p[m_] := p[m] = Zeta[1/2]*Product[Zeta[j/2], {j, 3, m}]; p[m0]; p[m = m0 + dm]; While[RealDigits[p[m], 10, digits + 10] != RealDigits[p[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[p[m], 10, digits] // First (* Jean-François Alcover, Jun 23 2014 *)
  • PARI
    prodinf(k=1, if (k!=2, zeta(k/2), 1)) \\ Michel Marcus, Oct 16 2020

A084893 Decimal expansion of Product_{j>=1, j!=3} zeta(j/3).

Original entry on oeis.org

1, 1, 8, 6, 9, 2, 4, 6, 1, 9, 7, 2, 7, 6, 4, 2, 8, 4, 6, 2, 6, 1, 6, 6, 9, 9, 3, 8, 1, 3, 7, 1, 1, 8, 0, 4, 8, 7, 8, 4, 8, 1, 4, 7, 7, 7, 0, 0, 0, 3, 6, 5, 8, 1, 3, 8, 9, 3, 3, 7, 7, 0, 9, 6, 8, 6, 7, 0, 8, 1, 5, 0, 4, 4, 2, 7, 8, 9, 8, 5, 9, 2, 1, 6, 1, 1, 1, 9, 0, 1, 8, 3, 4, 1, 2, 8, 9, 5, 3, 9, 5, 7
Offset: 3

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Comments

This constant, A_3, appears in the asymptotic formula A063966(n) = Sum_{k=1..n} A000688(k) = A_1 * n + A_2 * n^(1/2) + A_3 * n^(1/3) + O(n^(50/199 + e)), where e>0 is arbitrarily small, A_1 = A021002, and A_2 = A084892. - Amiram Eldar, Oct 16 2020

Examples

			118.6924619727642846261669938137118...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Programs

  • Mathematica
    m0 = 100; dm = 100; digits = 102; Clear[p]; p[m_] := p[m] = Zeta[1/3]*Zeta[2/3]*Product[Zeta[j/3], {j, 4, m}]; p[m0]; p[m = m0 + dm]; While[RealDigits[p[m], 10, digits + 10] != RealDigits[p[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[p[m], 10, digits] // First (* Jean-François Alcover, Jun 23 2014 *)
  • PARI
    prodinf(k=1, if (k!=3, zeta(k/3), 1)) \\ Michel Marcus, Oct 16 2020

A104404 Number of groups of order n all of whose subgroups are normal.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 2, 12, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 6, 5, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

Comments

A finite non-Abelian group has all of its subgroups normal precisely when it is the direct product of the quaternion group of order 8, a (possibly trivial) elementary Abelian 2-group, and an Abelian group of odd order. [Carmichael, p. 114] - Eric M. Schmidt, Jan 12 2014

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; b[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=b[e[n]]; h[n_]:=0; a[n_]:= b[n]+h[n];
  • PARI
    a(n)={my(e=valuation(n, 2)); my(f=factor(n/2^e)[, 2]); prod(i=1, #f, numbpart(f[i]))*(numbpart(e) + (e>=3))} \\ Andrew Howroyd, Aug 08 2018

Formula

The number a(n) of all groups of order n all of whose subgroups are normal is given as a(n) = b(n) + h(n), where b(n) denotes the number of Abelian groups of order n and h(n) denotes the number of Hamiltonian groups of order n.
a(n) = A000688(n) + A104488(n). - Andrew Howroyd, Aug 08 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A021002 * (1 + A048651/4) = 2.46053840757488111675... . - Amiram Eldar, Sep 23 2023

Extensions

Keyword:mult added by Andrew Howroyd, Aug 08 2018

A080729 Decimal expansion of the infinite product of zeta functions for even arguments.

Original entry on oeis.org

1, 8, 2, 1, 0, 1, 7, 4, 5, 1, 4, 9, 9, 2, 9, 2, 3, 9, 0, 4, 0, 6, 7, 2, 5, 1, 3, 2, 2, 2, 6, 0, 0, 6, 8, 4, 8, 5, 7, 8, 2, 6, 8, 0, 2, 8, 6, 4, 8, 2, 7, 1, 7, 5, 5, 0, 0, 2, 0, 9, 3, 8, 0, 0, 2, 8, 6, 0, 6, 5, 8, 8, 6, 7, 7, 0, 5, 4, 8, 8, 9, 3, 6, 3, 9, 6, 0, 2, 4, 9, 7, 5, 2, 1, 4, 5, 2, 9, 7, 6, 6, 1, 0, 9, 9
Offset: 1

Views

Author

Deepak R. N (deepak_rn(AT)safe-mail.net), Mar 08 2003

Keywords

Comments

By elementary estimates, the constant lies in the open interval (Pi/6, exp(3/4)). - Bernd C. Kellner, May 18 2024

Examples

			1.82101745149929239040672513222600684857...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Product[Zeta[2n],{n,500}],10,110][[1]] (* Harvey P. Dale, Jan 31 2012 *)
  • PARI
    prodinf(k=1, zeta(2*k)) \\ Vaclav Kotesovec, Jan 29 2024

Formula

Decimal expansion of zeta(2)*zeta(4)*...*zeta(2k)*...
If u(k) denotes the number of Abelian groups with group order k (A000688), then Product_{k>=1} zeta(2*k) = Sum_{k>=1} u(k)/k^2. - Benoit Cloitre, Jun 25 2003
Equals A021002/A080730. - Amiram Eldar, Jan 31 2024
This constant C is connected with the product of values of the Dedekind eta function on the upper imaginary axis. The product runs over the primes, where i is the imaginary unit: 1/C = Product_{prime p} (p^(1/12) * eta(i * log(p) / Pi)). - Bernd C. Kellner, May 18 2024

Extensions

More terms from Benoit Cloitre, Mar 08 2003

A084911 Decimal expansion of linear asymptotic constant B in Sum_{k=1..n} 1/A000688(k) = ~B*n + ...

Original entry on oeis.org

7, 5, 2, 0, 1, 0, 7, 4, 2, 3, 7, 7, 0, 2, 9, 1, 6, 1, 5, 2, 0, 6, 3, 6, 0, 7, 7, 4, 5, 5, 4, 3, 2, 5, 7, 6, 5, 6, 0, 7, 1, 8, 1, 4, 6, 9, 5, 9, 1, 2, 8, 5, 2, 6, 6, 9, 6, 3, 9, 9, 7, 9, 8, 3, 2, 6, 7, 2, 3, 5, 0, 5, 6, 8, 4, 6, 4, 7, 9, 7, 3, 7, 8, 6, 3, 9, 4, 7, 3, 6, 3, 7, 8, 0, 8, 6, 5, 4, 3, 7, 1, 0, 1, 3, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jun 11 2003

Keywords

Examples

			0.7520107423...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Programs

  • Mathematica
    digits = 10; m0 (* initial number of primes *) = 10^6; dm = 2*10^5; PP = PartitionsP; DP[n_] := DP[n] = (1/PP[n - 1] - 1 /PP[n]) // N[#, digits + 5]&; pmax = Prime[1000];
    nmax[p_ /; p <= pmax] := nmax[p] = Module[{n}, For[n = 2, n < 1000, n++, If[Abs[1/PP[n - 1] - 1 /PP[n]]/p^n < 10^-100, Return[n]]]]; nmax[p_ /; p > pmax] := nmax[pmax];
    s[p_] := Sum[DP[n]/p^n, {n, 2, nmax[p]}] ;
    f[m_] := f[m] = Product[1 - s[p], {p, Prime[Range[m]]}]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 2][[1]] != RealDigits[f[m - dm], 10, digits + 2][[1]], m = m + dm; Print[m, " ", RealDigits[f[m]]]];
    A0 = f[m]; RealDigits[A0, 10, digits][[1]] (* Jean-François Alcover, Apr 29 2016 *)
  • PARI
    default(realprecision, 120); default(parisize, 10000000);
    prodeulerrat((1-1/p)*(1 + sum(i = 1, 512, 1/(numbpart(i)*p^i)))) \\ Amiram Eldar, Mar 08 2024

Formula

Equals Product_{p prime} (1-Sum_{k >= 2} (1/P(k-1)-1/P(k))/p^k), where P(k) is the unrestricted partition function. - Jean-François Alcover, Apr 29 2016, [typo corrected by Vaclav Kotesovec, Mar 05 2024]
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} 1/A000688(k). - Amiram Eldar, Oct 16 2020

Extensions

Data corrected by Jean-François Alcover, Apr 29 2016
a(10) from Vaclav Kotesovec, Mar 07 2024
More terms from Amiram Eldar, Mar 08 2024

A101872 Number of Abelian groups of order 2n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 5, 2, 2, 1, 3, 1, 2, 1, 7, 1, 4, 1, 3, 1, 2, 1, 5, 2, 2, 3, 3, 1, 2, 1, 11, 1, 2, 1, 6, 1, 2, 1, 5, 1, 2, 1, 3, 2, 2, 1, 7, 2, 4, 1, 3, 1, 6, 1, 5, 1, 2, 1, 3, 1, 2, 2, 15, 1, 2, 1, 3, 1, 2, 1, 10, 1, 2, 2, 3, 1, 2, 1, 7, 5, 2, 1, 3, 1, 2, 1, 5, 1, 4, 1, 3, 1, 2, 1, 11, 1, 4, 2, 6, 1, 2, 1, 5
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Crossrefs

Bisection of A000688.
Cf. also A101876 (bisection of this sequence).

Programs

  • Mathematica
    Table[FiniteAbelianGroupCount[2 k], {k, 1, 100}] (* Geoffrey Critzer, Dec 29 2014 *)
  • PARI
    A101872(n) = factorback(apply(e -> numbpart(e),factor(2*n)[,2])); \\ Antti Karttunen, Sep 27 2018

Formula

a(n) = A000688(2n).
Multiplicative with a(2^k) = A000041(1+k), and for odd primes p, a(p^k) = A000041(k), where A000041(k) is the number of partitions of k. - Antti Karttunen, Sep 27 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * (1-A048651) * A021002 = 3.26425865613408900779... . - Amiram Eldar, Sep 23 2023

Extensions

More terms from Joshua Zucker, May 10 2006
Showing 1-10 of 32 results. Next