cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A021002 Decimal expansion of zeta(2)*zeta(3)*zeta(4)*...

Original entry on oeis.org

2, 2, 9, 4, 8, 5, 6, 5, 9, 1, 6, 7, 3, 3, 1, 3, 7, 9, 4, 1, 8, 3, 5, 1, 5, 8, 3, 1, 3, 4, 4, 3, 1, 1, 2, 8, 8, 7, 1, 3, 1, 6, 3, 7, 9, 9, 4, 4, 1, 6, 6, 8, 6, 7, 3, 2, 7, 5, 8, 1, 4, 0, 3, 0, 0, 0, 1, 3, 9, 7, 0, 1, 2, 0, 1, 1, 3, 2, 3, 1, 5, 7, 5, 0, 1, 7, 9, 6, 8, 0, 4, 5, 2, 3, 2, 7, 2, 4, 9, 0, 8, 1, 3, 8, 4
Offset: 1

Views

Author

Andre Neumann Kauffman (ank(AT)nlink.com.br)

Keywords

Comments

A very good approximation is 2e-Pi = ~2.29497100332829723225793155942... - Marco Matosic, Nov 16 2005
This constant is equal to the asymptotic mean of number of Abelian groups of order n (A000688). - Amiram Eldar, Oct 16 2020

Examples

			2.2948565916733137941835158313443112887131637994416686732758140300...
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963, p. 198-9.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A068982 (reciprocal), A082868 (continued fraction).

Programs

  • Maple
    evalf(product(Zeta(n), n=2..infinity), 200);
  • Mathematica
    p = Product[ N[ Zeta[n], 256], {n, 2, 1000}]; RealDigits[p, 10, 111][[1]] (* Robert G. Wilson v, Nov 22 2005 *)
  • PARI
    prodinf(n=2,zeta(n)) \\ Charles R Greathouse IV, May 27 2015

Formula

Product of A080729 and A080730. - R. J. Mathar, Feb 16 2011

Extensions

More terms from Simon Plouffe, Jan 07 2002
Further terms from Robert G. Wilson v, Nov 22 2005
Mathematica program fixed by Vaclav Kotesovec, Sep 20 2014

A084892 Decimal expansion of Product_{j>=1, j!=2} zeta(j/2) (negated).

Original entry on oeis.org

1, 4, 6, 4, 7, 5, 6, 6, 3, 0, 1, 6, 3, 8, 3, 1, 1, 3, 1, 6, 9, 9, 9, 7, 6, 0, 9, 1, 2, 2, 0, 4, 2, 1, 9, 2, 6, 3, 8, 1, 1, 7, 3, 0, 3, 4, 7, 9, 6, 9, 6, 0, 2, 5, 1, 6, 9, 2, 6, 9, 3, 9, 7, 5, 2, 0, 1, 2, 7, 5, 7, 9, 1, 0, 4, 4, 9, 2, 6, 3, 5, 2, 5, 2, 9, 1, 8, 1, 7, 4, 2, 3, 5, 1, 0, 2, 2, 7, 0, 9, 4, 1
Offset: 2

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Comments

This constant, A_2, appears in the asymptotic formula A063966(n) = Sum_{k=1..n} A000688(k) = A_1 * n + A_2 * n^(1/2) + A_3 * n^(1/3) + O(n^(50/199 + e)), where e>0 is arbitrarily small, A_1 = A021002, and A_3 = A084893. - Amiram Eldar, Oct 16 2020

Examples

			-14.64756630163831131699976...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Programs

  • Mathematica
    m0 = 100; dm = 100; digits = 102; Clear[p]; p[m_] := p[m] = Zeta[1/2]*Product[Zeta[j/2], {j, 3, m}]; p[m0]; p[m = m0 + dm]; While[RealDigits[p[m], 10, digits + 10] != RealDigits[p[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[p[m], 10, digits] // First (* Jean-François Alcover, Jun 23 2014 *)
  • PARI
    prodinf(k=1, if (k!=2, zeta(k/2), 1)) \\ Michel Marcus, Oct 16 2020

A084893 Decimal expansion of Product_{j>=1, j!=3} zeta(j/3).

Original entry on oeis.org

1, 1, 8, 6, 9, 2, 4, 6, 1, 9, 7, 2, 7, 6, 4, 2, 8, 4, 6, 2, 6, 1, 6, 6, 9, 9, 3, 8, 1, 3, 7, 1, 1, 8, 0, 4, 8, 7, 8, 4, 8, 1, 4, 7, 7, 7, 0, 0, 0, 3, 6, 5, 8, 1, 3, 8, 9, 3, 3, 7, 7, 0, 9, 6, 8, 6, 7, 0, 8, 1, 5, 0, 4, 4, 2, 7, 8, 9, 8, 5, 9, 2, 1, 6, 1, 1, 1, 9, 0, 1, 8, 3, 4, 1, 2, 8, 9, 5, 3, 9, 5, 7
Offset: 3

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Comments

This constant, A_3, appears in the asymptotic formula A063966(n) = Sum_{k=1..n} A000688(k) = A_1 * n + A_2 * n^(1/2) + A_3 * n^(1/3) + O(n^(50/199 + e)), where e>0 is arbitrarily small, A_1 = A021002, and A_2 = A084892. - Amiram Eldar, Oct 16 2020

Examples

			118.6924619727642846261669938137118...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Programs

  • Mathematica
    m0 = 100; dm = 100; digits = 102; Clear[p]; p[m_] := p[m] = Zeta[1/3]*Zeta[2/3]*Product[Zeta[j/3], {j, 4, m}]; p[m0]; p[m = m0 + dm]; While[RealDigits[p[m], 10, digits + 10] != RealDigits[p[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[p[m], 10, digits] // First (* Jean-François Alcover, Jun 23 2014 *)
  • PARI
    prodinf(k=1, if (k!=3, zeta(k/3), 1)) \\ Michel Marcus, Oct 16 2020

A370897 Partial alternating sums of the number of abelian groups sequence (A000688).

Original entry on oeis.org

1, 0, 1, -1, 0, -1, 0, -3, -1, -2, -1, -3, -2, -3, -2, -7, -6, -8, -7, -9, -8, -9, -8, -11, -9, -10, -7, -9, -8, -9, -8, -15, -14, -15, -14, -18, -17, -18, -17, -20, -19, -20, -19, -21, -19, -20, -19, -24, -22, -24, -23, -25, -24, -27, -26, -29, -28, -29, -28
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ (PartitionsP[Last[#]] & /@ FactorInteger[n]); f[1] = 1; Accumulate[Array[(-1)^(#+1) * f[#] &, 100]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * f(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A000688(k).
a(n) = k_1 * A021002 * n + k_2 * A084892 * n^(1/2) + k_3 * A084893 * n^(1/3) + O(n^(1/4 + eps)), where eps > 0 is arbitrarily small, k_j = -1 + 2 * Product_{i>=1} (1 - 1/2^(i/j)), k_1 = 2*A048651 - 1 = -0.422423809826..., k_2 = -0.924973966404..., and k_3 = -0.991478298912... (Tóth, 2017).

A104452 Number of groups of order <= n all of whose subgroups are normal.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 18, 19, 20, 21, 27, 28, 30, 31, 33, 34, 35, 36, 40, 42, 43, 46, 48, 49, 50, 51, 59, 60, 61, 62, 66, 67, 68, 69, 73, 74, 75, 76, 78, 80, 81, 82, 88, 90, 92, 93, 95, 96, 99, 100, 104, 105, 106, 107, 109, 110, 111, 113, 125, 126, 127
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0; numberOfAbelianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[a, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfHamiltonianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[h, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfAllGroupsOfOrderLEQThanN[n_]:=numberOfAbelianGroupsOfOrderLEQThanN[n] +numberOfHamiltonianGroupsOfOrderLEQThanN[n];

Formula

a(n) ~ c * n, where c = A021002 * (1 + A048651/4) = 2.46053840757488111675... . - Amiram Eldar, Oct 03 2023

A104407 Number of Hamiltonian groups of order <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0; numberOfHamiltonianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[h, Table[i, {i, 1, n}]], i], {i, 1, n}]];

Formula

a(n) ~ c * n, where c = A021002 * A048651 / 4 = 0.16568181590156732257... . - Amiram Eldar, Oct 03 2023

A104453 Smallest order for which there are n nonisomorphic finite Hamiltonian groups, or 0 if no such order exists.

Original entry on oeis.org

8, 72, 216, 1800, 648, 5400, 1944, 88200, 27000, 16200, 10, 5832, 264600, 0, 48600, 17496, 10672200, 0, 1323000, 0, 793800, 20, 243000, 52488, 0, 32016600, 405000, 0, 9261000, 2381400, 0, 157464
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

References

  • R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • J. C. Lennox and S. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Formula

S_h(n) denotes the smallest number k for which exactly n nonisomorphic hamiltonian groups of order k exist. Here 0 indicates the case when n is not a product of partition numbers and S_h(n) does not exist.

A379359 Numerators of the partial sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 2, 3, 7, 9, 11, 13, 41, 22, 25, 28, 59, 65, 71, 77, 391, 421, 218, 233, 481, 511, 541, 571, 581, 298, 313, 106, 217, 227, 237, 247, 1739, 1809, 1879, 1949, 3933, 4073, 4213, 4353, 13199, 13619, 14039, 14459, 14669, 14879, 15299, 15719, 15803, 16013, 16223, 16643
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 2, 3, 7/2, 9/2, 11/2, 13/2, 41/6, 22/3, 25/3, 28/3, 59/6, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 13-16, Theorem 1.3.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See section 5.1, Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A000688, A063966, A084911, A370897, A379360 (denominators), A379361.

Programs

  • Mathematica
    Numerator[Accumulate[Table[1/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / f(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A000688(k)).
a(n)/A379360(n) = D * n + O(sqrt(n/log(n))), where D = A084911.

A379360 Denominators of the partial sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 6, 6, 6, 6, 30, 30, 15, 15, 30, 30, 30, 30, 30, 15, 15, 5, 10, 10, 10, 10, 70, 70, 70, 70, 140, 140, 140, 140, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 140, 140, 140, 140, 140, 140, 140, 140
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 13-16, Theorem 1.3.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See section 5.1, Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A000688, A063966, A370897, A379359 (numerators), A379362.

Programs

  • Mathematica
    Denominator[Accumulate[Table[1/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / f(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A000688(k)).

A379361 Numerators of the partial alternating sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 0, 1, 1, 3, 1, 3, 7, 5, 2, 5, 7, 13, 7, 13, 59, 89, 37, 52, 89, 119, 89, 119, 109, 62, 47, 52, 89, 119, 89, 119, 803, 1013, 803, 1013, 1921, 2341, 1921, 2341, 2201, 2621, 2201, 2621, 2411, 2621, 2201, 2621, 2537, 2747, 2537, 2957, 2747, 3167, 1009, 1149, 3307
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 0, 1, 1/2, 3/2, 1/2, 3/2, 7/6, 5/3, 2/3, 5/3, 7/6, ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Accumulate[Table[(-1)^(n+1)/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / f(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A000688(k)).
a(n)/A379362(n) ~ D * c * n, where D = A084911, c = 2/(1 + Sum_{k>=1} 1/(P(k)*2^k)) - 1 = 0.18634377034863729099..., and P(k) = A000041(k).
Showing 1-10 of 13 results. Next