cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A063966 Number of Abelian groups of order <= n.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 15, 17, 18, 19, 20, 25, 26, 28, 29, 31, 32, 33, 34, 37, 39, 40, 43, 45, 46, 47, 48, 55, 56, 57, 58, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 76, 77, 82, 84, 86, 87, 89, 90, 93, 94, 97, 98, 99, 100, 102, 103, 104, 106, 117, 118, 119, 120, 122
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Sep 04 2001

Keywords

Crossrefs

Partial sums of A000688.
Cf. A063756.

Programs

  • Maple
    with(combinat): readlib(ifactors): total := 0: for n from 1 to 100 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,total+ans): total := total+ans: od:
  • Mathematica
    Accumulate[Table[FiniteAbelianGroupCount[n], {n, 1, 200}]] (* Geoffrey Critzer, Dec 28 2014 *)

Formula

a(n) ~ c * n, where c = A021002 = Product_{k>=2} zeta(k). - Vaclav Kotesovec, Oct 26 2019
More accurately, a(n) = A021002 * n + A084892 * n^(1/2) + A084893 * n^(1/3) + O(n^(50/199 + eps)), where eps>0 is arbitrarily small (Liu, 1993). - Amiram Eldar, Sep 23 2023

Extensions

More terms from James Sellers, Sep 26 2001

A084893 Decimal expansion of Product_{j>=1, j!=3} zeta(j/3).

Original entry on oeis.org

1, 1, 8, 6, 9, 2, 4, 6, 1, 9, 7, 2, 7, 6, 4, 2, 8, 4, 6, 2, 6, 1, 6, 6, 9, 9, 3, 8, 1, 3, 7, 1, 1, 8, 0, 4, 8, 7, 8, 4, 8, 1, 4, 7, 7, 7, 0, 0, 0, 3, 6, 5, 8, 1, 3, 8, 9, 3, 3, 7, 7, 0, 9, 6, 8, 6, 7, 0, 8, 1, 5, 0, 4, 4, 2, 7, 8, 9, 8, 5, 9, 2, 1, 6, 1, 1, 1, 9, 0, 1, 8, 3, 4, 1, 2, 8, 9, 5, 3, 9, 5, 7
Offset: 3

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Comments

This constant, A_3, appears in the asymptotic formula A063966(n) = Sum_{k=1..n} A000688(k) = A_1 * n + A_2 * n^(1/2) + A_3 * n^(1/3) + O(n^(50/199 + e)), where e>0 is arbitrarily small, A_1 = A021002, and A_2 = A084892. - Amiram Eldar, Oct 16 2020

Examples

			118.6924619727642846261669938137118...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Programs

  • Mathematica
    m0 = 100; dm = 100; digits = 102; Clear[p]; p[m_] := p[m] = Zeta[1/3]*Zeta[2/3]*Product[Zeta[j/3], {j, 4, m}]; p[m0]; p[m = m0 + dm]; While[RealDigits[p[m], 10, digits + 10] != RealDigits[p[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[p[m], 10, digits] // First (* Jean-François Alcover, Jun 23 2014 *)
  • PARI
    prodinf(k=1, if (k!=3, zeta(k/3), 1)) \\ Michel Marcus, Oct 16 2020

A084911 Decimal expansion of linear asymptotic constant B in Sum_{k=1..n} 1/A000688(k) = ~B*n + ...

Original entry on oeis.org

7, 5, 2, 0, 1, 0, 7, 4, 2, 3, 7, 7, 0, 2, 9, 1, 6, 1, 5, 2, 0, 6, 3, 6, 0, 7, 7, 4, 5, 5, 4, 3, 2, 5, 7, 6, 5, 6, 0, 7, 1, 8, 1, 4, 6, 9, 5, 9, 1, 2, 8, 5, 2, 6, 6, 9, 6, 3, 9, 9, 7, 9, 8, 3, 2, 6, 7, 2, 3, 5, 0, 5, 6, 8, 4, 6, 4, 7, 9, 7, 3, 7, 8, 6, 3, 9, 4, 7, 3, 6, 3, 7, 8, 0, 8, 6, 5, 4, 3, 7, 1, 0, 1, 3, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jun 11 2003

Keywords

Examples

			0.7520107423...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Programs

  • Mathematica
    digits = 10; m0 (* initial number of primes *) = 10^6; dm = 2*10^5; PP = PartitionsP; DP[n_] := DP[n] = (1/PP[n - 1] - 1 /PP[n]) // N[#, digits + 5]&; pmax = Prime[1000];
    nmax[p_ /; p <= pmax] := nmax[p] = Module[{n}, For[n = 2, n < 1000, n++, If[Abs[1/PP[n - 1] - 1 /PP[n]]/p^n < 10^-100, Return[n]]]]; nmax[p_ /; p > pmax] := nmax[pmax];
    s[p_] := Sum[DP[n]/p^n, {n, 2, nmax[p]}] ;
    f[m_] := f[m] = Product[1 - s[p], {p, Prime[Range[m]]}]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 2][[1]] != RealDigits[f[m - dm], 10, digits + 2][[1]], m = m + dm; Print[m, " ", RealDigits[f[m]]]];
    A0 = f[m]; RealDigits[A0, 10, digits][[1]] (* Jean-François Alcover, Apr 29 2016 *)
  • PARI
    default(realprecision, 120); default(parisize, 10000000);
    prodeulerrat((1-1/p)*(1 + sum(i = 1, 512, 1/(numbpart(i)*p^i)))) \\ Amiram Eldar, Mar 08 2024

Formula

Equals Product_{p prime} (1-Sum_{k >= 2} (1/P(k-1)-1/P(k))/p^k), where P(k) is the unrestricted partition function. - Jean-François Alcover, Apr 29 2016, [typo corrected by Vaclav Kotesovec, Mar 05 2024]
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} 1/A000688(k). - Amiram Eldar, Oct 16 2020

Extensions

Data corrected by Jean-François Alcover, Apr 29 2016
a(10) from Vaclav Kotesovec, Mar 07 2024
More terms from Amiram Eldar, Mar 08 2024

A370897 Partial alternating sums of the number of abelian groups sequence (A000688).

Original entry on oeis.org

1, 0, 1, -1, 0, -1, 0, -3, -1, -2, -1, -3, -2, -3, -2, -7, -6, -8, -7, -9, -8, -9, -8, -11, -9, -10, -7, -9, -8, -9, -8, -15, -14, -15, -14, -18, -17, -18, -17, -20, -19, -20, -19, -21, -19, -20, -19, -24, -22, -24, -23, -25, -24, -27, -26, -29, -28, -29, -28
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ (PartitionsP[Last[#]] & /@ FactorInteger[n]); f[1] = 1; Accumulate[Array[(-1)^(#+1) * f[#] &, 100]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * f(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A000688(k).
a(n) = k_1 * A021002 * n + k_2 * A084892 * n^(1/2) + k_3 * A084893 * n^(1/3) + O(n^(1/4 + eps)), where eps > 0 is arbitrarily small, k_j = -1 + 2 * Product_{i>=1} (1 - 1/2^(i/j)), k_1 = 2*A048651 - 1 = -0.422423809826..., k_2 = -0.924973966404..., and k_3 = -0.991478298912... (Tóth, 2017).

A249141 Decimal expansion of 'sigma', a constant associated with the expected number of random elements to generate a finite abelian group.

Original entry on oeis.org

2, 1, 1, 8, 4, 5, 6, 5, 6, 3, 4, 7, 0, 1, 6, 3, 5, 3, 2, 3, 8, 2, 5, 2, 7, 7, 6, 9, 1, 0, 2, 3, 6, 4, 7, 6, 4, 2, 8, 8, 5, 9, 0, 7, 8, 5, 6, 1, 8, 5, 1, 7, 9, 1, 5, 4, 1, 4, 2, 6, 3, 8, 5, 2, 9, 0, 9, 8, 3, 4, 1, 1, 2, 3, 6, 5, 3, 4, 6, 3, 4, 5, 7, 7, 5, 5, 7, 0, 8, 2, 5, 9, 7, 8, 1, 8, 7, 6, 7, 9, 3, 9
Offset: 1

Views

Author

Jean-François Alcover, Oct 22 2014

Keywords

Examples

			2.11845656347016353238252776910236476428859...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 273.

Crossrefs

Programs

  • Mathematica
    digits = 102; jmax = 400; P[j_] := 1/Product[N[Zeta[k], digits+100], {k, j, jmax}]; sigma = 1+Sum[1 - P[j], {j, 2, jmax}]; RealDigits[sigma, 10, digits] // First
  • PARI
    default(realprecision,120); 1 + suminf(j=2, 1 - prodinf(k=j, 1/zeta(k))) \\ Michel Marcus, Oct 22 2014

Formula

sigma = 1+sum_{j >= 2} (1-prod_{k >= j} zeta(k)^(-1)).

A245055 Decimal expansion of 'tau' (named sigma_2 by C. Pomerance), a constant associated with the expected number of random elements to generate a finite abelian group.

Original entry on oeis.org

1, 7, 4, 2, 6, 5, 2, 3, 1, 1, 0, 3, 3, 5, 1, 5, 4, 3, 5, 2, 4, 8, 9, 0, 4, 8, 0, 6, 9, 4, 1, 2, 9, 8, 6, 4, 1, 1, 5, 4, 4, 3, 7, 9, 8, 9, 8, 3, 8, 1, 0, 4, 6, 2, 8, 1, 4, 2, 9, 0, 4, 7, 9, 5, 7, 4, 6, 5, 5, 5, 0, 3, 8, 7, 0, 0, 8, 1, 3, 5, 0, 8, 6, 8, 0, 5, 8, 1, 4, 7, 4, 1, 7, 5, 2, 4, 7, 8, 8, 1, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 22 2014

Keywords

Examples

			1.7426523110335154352489048069412986411544379898381...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 273.

Crossrefs

Programs

  • Mathematica
    digits = 101; max = 400; c = 1/Product[N[Zeta[k], digits + 100], {k, 2, max}]; p[j_] := Product[N[Zeta[k], digits + 100], {k, 2, j}]; tau = Sum[1 - (1 - 2^-j)*c*p[j], {j, 1, max}]; RealDigits[tau, 10, digits ] // First
  • PARI
    default(realprecision,120); suminf(j=1, 1-(1-2^(-j))*prodinf(k=j+1, 1/zeta(k))) \\ Vaclav Kotesovec, Oct 22 2014

Formula

tau = sum_{j >= 1} (1-(1-2^(-j))*prod_{k >= j+1} zeta(k)^(-1)).
tau = sum_{j >= 1} (1-(1-2^(-j))*c*prod_{k = 2..j} zeta(k)), where c is A068982.
Showing 1-6 of 6 results.