A111912 Expansion of x*(2 +3*x +x^2 -2*x^5 -x^7 -x^8)/((1-x)*(1+x)*(1-x^4+x^8)).
0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1, 0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1, 0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1,0,-1,0,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 75); Coefficients(R!( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) )); // G. C. Greubel, Feb 12 2021 -
Maple
seq(coeff(series((x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))),x,n+1),x,n),n=0..75); # Muniru A Asiru, Jun 06 2018
-
Mathematica
LinearRecurrence[{0,1,0,1,0,-1,0,-1,0,1}, {0,2,3,3,3,5,4,6,3,5}, 75] (* G. C. Greubel, Feb 12 2021 *)
-
PARI
Vec(x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
-
Sage
def A111912_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) ).list() A111912_list(75) # G. C. Greubel, Feb 12 2021
Comments