cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A111912 Expansion of x*(2 +3*x +x^2 -2*x^5 -x^7 -x^8)/((1-x)*(1+x)*(1-x^4+x^8)).

Original entry on oeis.org

0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1, 0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1, 0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1
Offset: 0

Views

Author

Creighton Dement, Aug 20 2005

Keywords

Comments

Sequence has period 24.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 75);
    Coefficients(R!( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) )); // G. C. Greubel, Feb 12 2021
  • Maple
    seq(coeff(series((x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))),x,n+1),x,n),n=0..75); # Muniru A Asiru, Jun 06 2018
  • Mathematica
    LinearRecurrence[{0,1,0,1,0,-1,0,-1,0,1}, {0,2,3,3,3,5,4,6,3,5}, 75] (* G. C. Greubel, Feb 12 2021 *)
  • PARI
    Vec(x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    def A111912_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) ).list()
    A111912_list(75) # G. C. Greubel, Feb 12 2021
    

A111913 Expansion of x*(-2-3*x-x^2+x^7+x^8+2*x^4) / ((x-1)*(x+1)*(x^8-x^4+1)).

Original entry on oeis.org

0, 2, 3, 3, 3, 3, 6, 4, 5, 1, 5, 1, 4, -2, 1, -3, 1, -3, -2, -4, -1, -1, -1, -1, 0, 2, 3, 3, 3, 3, 6, 4, 5, 1, 5, 1, 4, -2, 1, -3, 1, -3, -2, -4, -1, -1, -1, -1, 0, 2, 3, 3, 3, 3, 6, 4, 5, 1, 5, 1, 4, -2, 1, -3, 1, -3, -2, -4, -1, -1, -1, -1, 0, 2, 3, 3, 3, 3, 6, 4, 5, 1, 5, 1, 4, -2, 1, -3, 1, -3, -2, -4, -1, -1, -1, -1, 0, 2, 3, 3
Offset: 0

Views

Author

Creighton Dement, Aug 20 2005

Keywords

Comments

It appears that (a(n)) has period 24.
The above conjecture is correct, since x^24 = 1 mod (x-1)*(x+1)*(x^8-x^4+1). - Charles R Greathouse IV, Feb 07 2013
Floretion Algebra Multiplication Program, FAMP Code: 4ibasesigcycsumseq[ + .5'i + .5j' + .5'ij' + .5e], sumtype: Y[8] = (int)Y[6] - (int)Y[7] + Y[8] + sum (internal program code); apart from initial term 0.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,1,0,-1,0,-1,0,1},{0,2,3,3,3,3,6,4,5,1},120] (* Harvey P. Dale, Apr 14 2019 *)
  • PARI
    a(n)=[0,2,3,3,3,3,6,4,5,1,5,1,4,-2,1,-3,1,-3,-2,-4,-1,-1,-1,-1][n%24+1] \\ Charles R Greathouse IV, Feb 07 2013
    
  • PARI
    concat(0, Vec(x*(2 + 3*x + x^2 - 2*x^4 - x^7 - x^8) / ((1 - x)*(1 + x)*(1 - x^4 + x^8)) + O(x^80))) \\ Colin Barker, May 18 2019

Formula

a(n) = a(n-2) + a(n-4) - a(n-6) - a(n-8) + a(n-10) for n>9. - Colin Barker, May 18 2019

A111914 Expansion of -x^2*(x^4-2*x^3+x^2-2*x+1)*(x+1)^2 / ((x-1)*(x^8-x^4+1)).

Original entry on oeis.org

0, 0, 1, 1, -1, -3, -4, -4, -5, -7, -9, -9, -8, -8, -9, -9, -7, -5, -4, -4, -3, -1, 1, 1, 0, 0, 1, 1, -1, -3, -4, -4, -5, -7, -9, -9, -8, -8, -9, -9, -7, -5, -4, -4, -3, -1, 1, 1, 0, 0, 1, 1, -1, -3, -4, -4, -5, -7, -9, -9, -8, -8, -9, -9, -7, -5, -4, -4, -3, -1, 1, 1, 0, 0, 1, 1, -1, -3, -4, -4, -5, -7, -9, -9, -8, -8, -9, -9, -7, -5, -4, -4
Offset: 0

Views

Author

Creighton Dement, Aug 20 2005

Keywords

Comments

It appears that (a(n)) has period 24.

Crossrefs

Programs

  • PARI
    concat([0,0], Vec(x^2*(1 + x)^2*(1 - 2*x + x^2 - 2*x^3 + x^4) / ((1 - x)*(1 - x^4 + x^8)) + O(x^40))) \\ Colin Barker, May 18 2019

Formula

a(n) = a(n-1) + a(n-4) - a(n-5) - a(n-8) + a(n-9) for n > 8. - Colin Barker, May 18 2019

A111915 Expansion of -x^2*(x-1)*(x^2-x+1)*(x+x^2+1)/(1-x^4+x^8).

Original entry on oeis.org

0, 0, 1, -1, 1, -1, 2, -2, 1, -1, 1, -1, 0, 0, -1, 1, -1, 1, -2, 2, -1, 1, -1, 1, 0, 0, 1, -1, 1, -1, 2, -2, 1, -1, 1, -1, 0, 0, -1, 1, -1, 1, -2, 2, -1, 1, -1, 1, 0, 0, 1, -1, 1, -1, 2, -2, 1, -1, 1, -1, 0, 0, -1, 1, -1, 1, -2, 2, -1, 1, -1, 1, 0, 0, 1, -1, 1, -1, 2, -2, 1, -1, 1, -1, 0, 0, -1, 1, -1, 1, -2, 2, -1, 1, -1, 1, 0, 0, 1, -1
Offset: 0

Views

Author

Creighton Dement, Aug 20 2005

Keywords

Comments

It appears that a(n) has period 24.
This is true, as (1-x^4+x^8) is the cyclotomic polynomial for n=24. - Joerg Arndt, Feb 03 2017

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x^2*(x - 1)*(x^2 - x + 1)*(x + x^2 + 1)/(1 - x^4 + x^8), {x, 0, 100}], x] (* Wesley Ivan Hurt, Feb 03 2017 *)
  • PARI
    a(n)=[0, 0, 1, -1, 1, -1, 2, -2, 1, -1, 1, -1, 0, 0, -1, 1, -1, 1, -2, 2, -1, 1, -1, 1][n%24+1] \\ Charles R Greathouse IV, Feb 03 2017

Formula

G.f.: -x^2*(x-1)*(x^2-x+1)*(x+x^2+1)/(1-x^4+x^8).

A169862 Decimal expansion of root of x^(x-1) = (x-1)^x.

Original entry on oeis.org

3, 2, 9, 3, 1, 6, 6, 2, 8, 7, 4, 1, 1, 8, 6, 1, 0, 3, 1, 5, 0, 8, 0, 2, 8, 2, 9, 1, 2, 5, 0, 8, 0, 5, 8, 6, 4, 3, 7, 2, 2, 5, 7, 2, 9, 0, 3, 2, 7, 1, 2, 1, 2, 4, 8, 5, 3, 7, 7, 1, 0, 3, 9, 6, 1, 6, 8, 5, 0, 6, 4, 8, 8, 0, 0, 9, 1, 5, 7, 7, 4, 3, 6, 2, 9, 0, 4, 2, 0, 1, 3, 8, 0, 4, 8, 2, 8, 2, 5, 6, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2010, based on a suggestion from Daniel Forgues

Keywords

Examples

			3.2931662874118610315080282912508058643722572903271212485377103961...
		

Crossrefs

Equals A085846 + 1. Cf. A021002.

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^(x-1)==(x-1)^x,{x,3}, WorkingPrecision->150]] [[1]] (* Harvey P. Dale, Nov 09 2011 *)
  • PARI
    solve(x=3,4,x^(x-1)-(x-1)^x) \\ Charles R Greathouse IV, Apr 14 2014

A113554 Decimal expansion of average of e^(1/e) and Pi.

Original entry on oeis.org

2, 2, 9, 3, 1, 3, 0, 2, 5, 7, 2, 9, 9, 7, 7, 9, 6, 8, 6, 0, 6, 0, 4, 9, 1, 2, 4, 5, 9, 3, 7, 9, 6, 6, 5, 5, 3, 6, 2, 7, 8, 8, 2, 4, 2, 6, 3, 0, 8, 6, 7, 9, 4, 9, 3, 3, 9, 7, 7, 3, 3, 6, 2, 8, 3, 0, 5, 8, 3, 5, 6, 7, 2, 0, 0, 2, 4, 1, 1, 7, 5, 2, 1, 0, 0, 8, 0, 8, 8, 7, 4, 1, 9, 4, 6, 0, 7, 9, 5, 9, 5, 6, 2, 5, 5
Offset: 1

Views

Author

Marco Matosic, Jan 13 2006

Keywords

Comments

Close to A085846 which is also close to the product Zeta(2...s) and this is itself close to 2e-Pi. The e-th root of e, eRe, is the maximum for any aRa = bRb pair. See A085846. Likewise for a^b = b^a pairs there is a minimum, e^e.
For the Foias constant F satisfying FRF = fRf, F*f is very close to the third zero of the Riemann zeta function.

Examples

			2.2931302572997796860604912459379665536278824263086794933977336283...
		

Programs

Formula

Equals (Pi + e^(1/e))/2.

Extensions

a(18)-a(100) from Ryan Propper, Jul 21 2006
a(99)-a(100) corrected and a(101)-a(105) added by Danny Rorabaugh, Mar 26 2015

A144184 Decimal expansion of the convergent to the recurrence x = 1/(x^(1/x)-1/x-1) for all starting values of x >= 3.

Original entry on oeis.org

5, 5, 0, 7, 9, 8, 5, 6, 5, 2, 7, 7, 3, 1, 7, 8, 2, 5, 7, 5, 8, 9, 0, 2, 6, 2, 9, 8, 0, 5, 2, 1, 3, 8, 7, 3, 0, 0, 1, 6, 0, 2, 4, 6, 6, 3, 3, 0, 4, 1, 1, 8, 2, 2, 9, 8, 8, 3, 0, 2, 8, 6, 8, 5, 1, 9, 3, 3, 6, 8, 2, 3, 8, 2, 0, 3, 9, 0, 2, 5, 8, 1, 7, 5, 5, 8, 0, 6, 6, 4, 8, 9, 4, 9, 7, 9, 6, 3, 9, 4
Offset: 1

Views

Author

Cino Hilliard, Sep 13 2008, Sep 15 2008

Keywords

Comments

1/(x^(1/x)-1/x-1) ~ pi(x), the number of prime numbers <= x. This is comparable to the well known approximation Pi(x) ~ x/(log(x)-1). As x -> infinity, pi(x) - 1/(x^(1/x)-1/x-1) -> 1/2 as x-> infinity. This was derived from my original n-th root formula 1/(x^(1/x)-1) ~ pi(x). The convergent of the recurrence x = 1/(x^(1/x)-1) = 2.293166287... is expanded in A085846 and is referred to as Foias constant. The convergents 5.507985652... and 2.293166287... are both roots of 1/(x^(1/x)-1/x-1)-x = 0. 2.293166287... is also a root of 1/(x^(1/x)-1) - x = 0.
We have here examples of functions, f(x), for which we can solve for a root by recursion of the variable x. Another simple example is the recursion x = 1/(x+1).

Crossrefs

Cf. A085846.

Programs

  • Mathematica
    RealDigits[ x /. FindRoot[ 1/(x^(1/x) - 1/x - 1) - x == 0, {x, 5}, WorkingPrecision -> 100]][[1]] (* Jean-François Alcover, Dec 20 2011 *)
  • PARI
    g(x) = 1/(x^(1/x)-1/x-1) g2(n) = a=n;for(j=1,100,a=g(a));b=eval(Vec(Str(floor(a*10^99))));
    for(j=1,100,print1(b[j]","))

Formula

The convergent used to generate this sequence, 5.50798565277317825758902..., is computed with the recurrence x = 1/(x^(1/x)-1/x-1) and can also be found by solving for the roots of 1/(x^(1/x)-1/x-1)-x = 0.

A226568 Decimal expansion of the number defined by x^x + x = 1.

Original entry on oeis.org

3, 0, 3, 6, 5, 9, 1, 2, 7, 0, 2, 9, 9, 6, 6, 0, 5, 1, 2, 4, 5, 0, 1, 8, 9, 5, 1, 2, 1, 3, 2, 2, 2, 6, 5, 9, 9, 9, 1, 1, 9, 9, 6, 1, 8, 7, 6, 1, 1, 7, 2, 7, 0, 9, 6, 4, 4, 1, 7, 0, 3, 3, 4, 5, 6, 0, 6, 6, 1, 7, 6, 6, 6, 2, 0, 1, 3, 7, 7, 8, 4, 7, 8, 2, 3, 6, 6, 2, 0, 6, 2, 9, 3, 4, 8, 1, 6, 5, 4, 1, 8, 2, 0, 3, 3
Offset: 0

Views

Author

Keywords

Examples

			0.30365912702996605124501895121322265999119961876117270964417033...
		

Crossrefs

Cf. A085846.

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^x + x == 1, {x, 3.5}, WorkingPrecision -> 110]][[1]]
  • PARI
    solve(x=.3,1,x^x+x-1) \\ Charles R Greathouse IV, Apr 21 2016

Formula

Equals 1/(A085846+1). - Bruno Berselli, Jun 14 2013
Showing 1-8 of 8 results.