cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182928 Triangular array read by rows: [T(n,k),k=1..tau(n)] = [-n!/(d*(-(n/d)!)^d), d|n].

Original entry on oeis.org

1, 1, -1, 1, 2, 1, -3, -6, 1, 24, 1, -10, 30, -120, 1, 720, 1, -35, -630, -5040, 1, 560, 40320, 1, -126, 22680, -362880, 1, 3628800, 1, -462, 11550, -92400, -1247400, -39916800, 1, 479001600, 1, -1716, 97297200, -6227020800
Offset: 1

Views

Author

Peter Luschny, Apr 13 2011

Keywords

Comments

The number of terms in the n-th row is the number of divisors of n. The n-th row is (apart from sign) a subsequence of the column labeled "M_1" for n-1 in Abramowitz and Stegun, Handbook, p. 831.
Let s(n) be the sum of row n. The number of partitions of an n-set with distinct block sizes can be computed recursively as A007837(0) = 1 and A007837(n) = - Sum_{1<=k<=n} binomial(n-1,k-1)*s(k)*A007837(n-k).
Let t(n) be the sum of the absolute values of row n. The sum of multinomial coefficients can be computed recursively as A005651(0) = 1 and A005651(n) = Sum_{1<=k<=n} binomial(n-1,k-1)*t(k)*A005651(n-k).

Examples

			The array starts with
[1] 1,
[2] 1,  -1,
[3] 1,   2,
[4] 1,  -3,   -6,
[5] 1,  24,
[6] 1, -10,   30,  -120,
[7] 1, 720,
[8] 1, -35,  -630, -5040,
[9] 1, 560, 40320,
		

Crossrefs

Programs

  • Maple
    A182928_row := proc(n) local d;
    seq(-n!/(d*(-(n/d)!)^d), d = numtheory[divisors](n)) end:
  • Mathematica
    row[n_] := Table[ -n!/(d*(-(n/d)!)^d), {d, Divisors[n]}]; Table[row[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)

A292308 E.g.f.: 1/Product_{k>=1} (1 + x^k/k!).

Original entry on oeis.org

1, -1, 1, -4, 21, -96, 520, -3795, 32053, -284368, 2763876, -30648465, 373339824, -4833294389, 67167087793, -1009753574739, 16215467043493, -275361718915824, 4947532173402532, -94054153646919213, 1882793796608183356, -39528099512321898363
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1 + x^k/k!), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 14 2017 *)

Formula

a(n) = (-1)^n * A076901(n).
a(n) ~ c * (-1)^n * n!, where c = Product_{k>=2} (1 + (-1)^k/k!) = 0.77351587386... - Vaclav Kotesovec, Sep 14 2017

A319219 Expansion of e.g.f. Product_{k>=1} 1/(1 + x^k/(k - 1)!).

Original entry on oeis.org

1, -1, 0, -3, 32, -105, 204, -3325, 52408, -376425, 1304180, -25766301, 659066484, -6675505837, 30765540974, -893416597515, 29169795361424, -380344619169729, 2379504317523300, -84225906785770525, 3388223174832010540, -55107296201168047221, 422923168260105913070
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul(1/(1 + x^k/(k - 1)!),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[1/(1 + x^k/(k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[x^(j k)/(k (-(j - 1)!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[d (-(d - 1)!)^(-k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(-(j - 1)!)^k)).

A346315 Sum_{n>=0} a(n) * x^n / (n!)^2 = Product_{n>=1} 1 / (1 + (-x)^n / (n!)^2).

Original entry on oeis.org

1, 1, 3, 28, 483, 11976, 423660, 20801775, 1337182819, 108259612048, 10814058518328, 1308659192928495, 188498906179378476, 31855351764833425895, 6243218508505581436249, 1404734813476218805338303, 359618310105650201828166499, 103929494668760259335327432160
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 17; CoefficientList[Series[Product[1/(1 + (-x)^k/(k!)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[(-1)^k (Binomial[n, k] k!)^2 k Sum[(-1)^d/(d ((k/d)!)^(2 d)), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} (-1)^k * (binomial(n,k) * k!)^2 * k * ( Sum_{d|k} (-1)^d / (d * ((k/d)!)^(2*d)) ) * a(n-k).
Showing 1-4 of 4 results.