A182926
Row sums of absolute values of A182928.
Original entry on oeis.org
1, 2, 3, 10, 25, 161, 721, 5706, 40881, 385687, 3628801, 41268613, 479001601, 6324319717, 87212177053, 1317906346186, 20922789888001, 357099708702023, 6402373705728001, 121882752536893635, 2432928081076384321, 51140835669924352717
Offset: 1
a(6) = 1 + 10 + 30 + 120 = 161.
-
A182926 := proc(n) local d;
add(n!/(d*((n/d)!)^d),d = numtheory[divisors](n)) end:
seq(A182926(i), i = 1..22);
-
a[n_] := Sum[ Abs[ -n!/(d*(-(n/d)!)^d)], {d, Divisors[n]}]; Table[ a[n], {n, 1, 22}] (* Jean-François Alcover, Jul 29 2013 *)
Original entry on oeis.org
1, 0, 3, -8, 25, -99, 721, -5704, 40881, -340325, 3628801, -41245511, 479001601, -6129725315, 87212177053, -1317906346184, 20922789888001, -354320889234597, 6402373705728001, -121882630320799633, 2432928081076384321, -51041048673495232715
Offset: 1
a(6) = 1 - 10 + 30 - 120 = -99.
-
A182927 := proc(n) local d;
add(-n! / (d*(-(n/d)!)^d), d = numtheory[divisors](n)) end:
seq(A182927(i), i = 1..22);
-
a[n_] := Sum[ -n!/(d*(-(n/d)!)^d), {d, Divisors[n]}]; Table[a[n], {n, 1, 22}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
A076901
E.g.f.: 1/Product_{m>0} (1+(-x)^m/m!).
Original entry on oeis.org
1, 1, 1, 4, 21, 96, 520, 3795, 32053, 284368, 2763876, 30648465, 373339824, 4833294389, 67167087793, 1009753574739, 16215467043493, 275361718915824, 4947532173402532, 94054153646919213, 1882793796608183356, 39528099512321898363, 869222284280777733043
Offset: 0
-
A076901 := proc(n) local a, s;
s := proc(n) local d; add((-1)^d*n!/(d*(n/d)!^d),
d = numtheory[divisors](n)) end:
a := proc(n) option remember; local k;
`if`(n=0, 1, add(binomial(n-1,k-1)*s(k)*a(n-k),k = 1..n)) end:
(-1)^n*a(n) end:
seq(A076901(n), n=0..20); # Peter Luschny, Apr 16 2011
-
nmax = 25; Table[SeriesCoefficient[Product[1/(1 + (-x)^k/k!), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 14 2017 *)
Showing 1-3 of 3 results.
Comments