cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007837 Number of partitions of n-set with distinct block sizes.

Original entry on oeis.org

1, 1, 1, 4, 5, 16, 82, 169, 541, 2272, 17966, 44419, 201830, 802751, 4897453, 52275409, 166257661, 840363296, 4321172134, 24358246735, 183351656650, 2762567051857, 10112898715063, 62269802986835, 343651382271526, 2352104168848091, 15649414071734847
Offset: 0

Views

Author

Keywords

Comments

Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A185895. - Peter Bala, Mar 17 2022

Examples

			From _Gus Wiseman_, Jul 13 2019: (Start)
The a(1) = 1 through a(5) = 16 set partitions with distinct block sizes:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}    {{1,2,3,4,5}}
                  {{1},{2,3}}  {{1},{2,3,4}}  {{1},{2,3,4,5}}
                  {{1,2},{3}}  {{1,2,3},{4}}  {{1,2},{3,4,5}}
                  {{1,3},{2}}  {{1,2,4},{3}}  {{1,2,3},{4,5}}
                               {{1,3,4},{2}}  {{1,2,3,4},{5}}
                                              {{1,2,3,5},{4}}
                                              {{1,2,4},{3,5}}
                                              {{1,2,4,5},{3}}
                                              {{1,2,5},{3,4}}
                                              {{1,3},{2,4,5}}
                                              {{1,3,4},{2,5}}
                                              {{1,3,4,5},{2}}
                                              {{1,3,5},{2,4}}
                                              {{1,4},{2,3,5}}
                                              {{1,4,5},{2,3}}
                                              {{1,5},{2,3,4}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
           d=numtheory[divisors](k))*(n-1)!/(n-k)!*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 06 2008
    # second Maple program:
    A007837 := proc(n) option remember; local k; `if`(n = 0, 1,
    add(binomial(n-1, k-1) * A182927(k) * A007837(n-k), k = 1..n)) end:
    seq(A007837(i),i=0..24); # Peter Luschny, Apr 25 2011
  • Mathematica
    nn=20;p=Product[1+x^i/i!,{i,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[p,{x,0,nn}],x],1]  (* Geoffrey Critzer, Sep 22 2012 *)
    a[0]=1; a[n_] := a[n] = Sum[(n-1)!/(n-k)!*DivisorSum[k, -#*(-#!)^(-k/#)&]* a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Vladeta Jovovic *)
  • PARI
    {my(n=20); Vec(serlaplace(prod(k=1, n, (1+x^k/k!) + O(x*x^n))))} \\ Andrew Howroyd, Dec 21 2017

Formula

E.g.f.: Product_{m >= 1} (1+x^m/m!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)*(-d!)^(-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 13 2002
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018

Extensions

More terms from Christian G. Bower
a(0)=1 prepended by Alois P. Heinz, Aug 29 2015

A182926 Row sums of absolute values of A182928.

Original entry on oeis.org

1, 2, 3, 10, 25, 161, 721, 5706, 40881, 385687, 3628801, 41268613, 479001601, 6324319717, 87212177053, 1317906346186, 20922789888001, 357099708702023, 6402373705728001, 121882752536893635, 2432928081076384321, 51140835669924352717
Offset: 1

Views

Author

Peter Luschny, Apr 16 2011

Keywords

Comments

The sum of multinomial coefficients can be computed recursively as
A005651(0) = 1 and A005651(n) = Sum_{1<=k<=n} binomial(n-1,k-1) * A182926(k) * A005651(n-k).
Möbius inversion yields: 1, 1, 2, 8, 24, 157, 720, 5696, 40878,...
A182927(2*i+1) = A182926(2*i+1).

Examples

			a(6) = 1 + 10 + 30 + 120 = 161.
		

Crossrefs

Programs

  • Maple
    A182926 := proc(n) local d;
    add(n!/(d*((n/d)!)^d),d = numtheory[divisors](n)) end:
    seq(A182926(i), i = 1..22);
  • Mathematica
    a[n_] := Sum[ Abs[ -n!/(d*(-(n/d)!)^d)], {d, Divisors[n]}]; Table[ a[n], {n, 1, 22}] (* Jean-François Alcover, Jul 29 2013 *)

Formula

a(n) = Sum_{d|n} n!/(d*((n/d)!)^d).
E.g.f.: Sum_{k>=1} log(1/(1 - x^k/k!)). - Ilya Gutkovskiy, May 21 2019

A308345 Expansion of e.g.f. Sum_{k>=1} log(1/(1 - x^k/k)).

Original entry on oeis.org

1, 2, 4, 15, 48, 310, 1440, 11970, 85120, 821016, 7257600, 91707000, 958003200, 13440913200, 178919989248, 2809456650000, 41845579776000, 763629026160000, 12804747411456000, 257140635922025856, 4918792391884800000, 106876408948152480000
Offset: 1

Views

Author

Ilya Gutkovskiy, May 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Sum[Log[1/(1 - x^k/k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[n! Sum[1/(d (n/d)^d), {d, Divisors[n]}], {n, 1, 22}]

Formula

a(n) = n! * Sum_{d|n} 1/(d*(n/d)^d).
a(n) = A007841(n) - (1/n) * Sum_{k=1..n-1} k*binomial(n,k)*A007841(n-k)*a(k).
a(n) ~ 2 * (n-1)!. - Vaclav Kotesovec, Feb 16 2020

A308336 Expansion of e.g.f. exp(-1 + Product_{k>=1} (1 + x^k/k!)).

Original entry on oeis.org

1, 1, 2, 8, 31, 147, 884, 5567, 39176, 311400, 2644490, 24206327, 239684768, 2519262527, 28077597357, 331892965533, 4130002336563, 53944450834303, 738940309779760, 10577568411051305, 157846971489443335, 2452481386778640564, 39589449956634478543
Offset: 0

Views

Author

Ilya Gutkovskiy, May 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Product[(1 + x^k/k!), {k, 1, nmax}] - 1], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A007837(k)*a(n-k).

A328193 Expansion of e.g.f. Sum_{k>=1} log(1/(1 + (-x)^k/k)).

Original entry on oeis.org

1, 0, 4, 3, 48, 10, 1440, 1890, 85120, 49896, 7257600, 6883800, 958003200, 792277200, 178919989248, 194107914000, 41845579776000, 29714949264000, 12804747411456000, 12900082757417856, 4918792391884800000, 4594737608304480000, 2248001455555215360000
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 30 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!*add((-1)^(n-d)/(d*(n/d)^d), d=numtheory[divisors](n)):
    seq(a(n), n=1..24);  # Alois P. Heinz, Oct 30 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[Log[1/(1 + (-x)^k/k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[n! Sum[(-1)^(n - d)/(d (n/d)^d), {d, Divisors[n]}], {n, 1, 23}]

Formula

a(n) = n! * Sum_{d|n} (-1)^(n - d) / (d * (n/d)^d).
Showing 1-5 of 5 results.