cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A356406 a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/(d * (k/d)^d).

Original entry on oeis.org

1, 4, 16, 79, 443, 2968, 22216, 189698, 1792402, 18745036, 213452996, 2653142952, 35448861576, 509724975264, 7824794618208, 128006170541328, 2217950478978576, 40686737647774368, 785852762719168992, 15974195890305405696, 340376906088298319616
Offset: 1

Views

Author

Seiichi Manyama, Aug 05 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k, d, 1/(d*(k/d)^d)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-x^k/k))/(1-x)))

Formula

E.g.f.: -(1/(1-x)) * Sum_{k>0} log(1 - x^k/k).
a(n) = n! * Sum_{k=1..n} A308345(k)/k!.

A354339 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} 1/(d * (k/d)^d) )/(n-k)!.

Original entry on oeis.org

1, 4, 13, 47, 188, 939, 5332, 36196, 279085, 2464592, 23591753, 259110191, 3030440580, 38874240339, 535736880460, 8027897509136, 126034992483809, 2144006461602308, 38072688073456557, 723023026186433271, 14342481336066795732, 301141522554921194275
Offset: 1

Views

Author

Seiichi Manyama, Aug 15 2022

Keywords

Crossrefs

Programs

  • PARI
    a308345(n) = n!*sumdiv(n, d, 1/(d*(n/d)^d));
    a(n) = sum(k=1, n, a308345(k)*binomial(n, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x)*sum(k=1, N, log(1-x^k/k))))

Formula

a(n) = Sum_{k=1..n} A308345(k) * binomial(n,k).
E.g.f.: -exp(x) * Sum_{k>0} log(1-x^k/k).

A328193 Expansion of e.g.f. Sum_{k>=1} log(1/(1 + (-x)^k/k)).

Original entry on oeis.org

1, 0, 4, 3, 48, 10, 1440, 1890, 85120, 49896, 7257600, 6883800, 958003200, 792277200, 178919989248, 194107914000, 41845579776000, 29714949264000, 12804747411456000, 12900082757417856, 4918792391884800000, 4594737608304480000, 2248001455555215360000
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 30 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!*add((-1)^(n-d)/(d*(n/d)^d), d=numtheory[divisors](n)):
    seq(a(n), n=1..24);  # Alois P. Heinz, Oct 30 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[Log[1/(1 + (-x)^k/k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[n! Sum[(-1)^(n - d)/(d (n/d)^d), {d, Divisors[n]}], {n, 1, 23}]

Formula

a(n) = n! * Sum_{d|n} (-1)^(n - d) / (d * (n/d)^d).

A356577 Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k) )^x.

Original entry on oeis.org

1, 0, 2, 6, 28, 195, 1248, 11200, 97088, 1036602, 11477230, 142038996, 1883459928, 27044341896, 412487825540, 6745633845210, 116679466051968, 2137078798914128, 41252266236703320, 838320793571448408, 17846205347898263960, 398262850748807921856
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-x^k/k)^x))
    
  • PARI
    a308345(n) = n!*sumdiv(n, d, 1/(d*(n/d)^d));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*a308345(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1, a(1) = 0; a(n) = Sum_{k=2..n} k * A308345(k-1) * binomial(n-1,k-1) * a(n-k).
Showing 1-4 of 4 results.