cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076976 Product of the smallest prime divisors of composite numbers between successive primes.

Original entry on oeis.org

1, 2, 2, 12, 2, 12, 2, 12, 120, 2, 120, 12, 2, 12, 168, 120, 2, 120, 12, 2, 168, 12, 120, 1680, 12, 2, 12, 2, 12, 2217600, 12, 168, 2, 15840, 2, 120, 168, 12, 312, 120, 2, 15840, 2, 12, 2, 221760, 262080, 12, 2, 12, 120, 2, 18720, 264, 168, 120, 2, 120, 12, 2, 34272
Offset: 1

Views

Author

Amarnath Murthy, Oct 23 2002

Keywords

Comments

From Bernard Schott, Apr 09 2020: (Start)
a(n) = 2 iff prime(n) is in A001359 (prime gap=2).
a(n) = 12 iff prime(n) is in A029710 (prime gap=4).
a(n) = 24 * p with p prime >= 5 iff prime(n) is in A031924 (prime gap=6).
a(n) = 2^m * q with q odd >= 3 iff prime(n+1) - prime(n) = 2*m where m = A007814(a(n)). (End)

Crossrefs

Cf. A029707 (a(n)=2), A029709 (a(n)=12), A076977.

Programs

  • Maple
    p:= 2:
    for i from 1 to 100 do
      q:= p; p:= nextprime(p);
      A[i]:= mul(min(numtheory:-factorset(i)),i=q+1..p-1);
    od:
    seq(A[i],i=1..100); # Robert Israel, Mar 30 2020
  • Mathematica
    pspd[{p1_,p2_}]:=Times@@(FactorInteger[#][[1,1]]&/@Range[p1+1,p2-1]); pspd/@Partition[ Prime[Range[70]],2,1] (* Harvey P. Dale, Jan 12 2024 *)
  • PARI
    a(n) = {my(p=1, pn=prime(n)); forcomposite(c=pn, nextprime(pn+1)-1, p *= vecmin(factor(c)[,1]);); p;} \\ Michel Marcus, Mar 31 2020

Extensions

More terms from Sascha Kurz, Jan 22 2003