cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077005 Smallest k such that prime(n) divides k*prime(n-1) + 1, n > 1.

Original entry on oeis.org

1, 3, 4, 3, 7, 13, 10, 6, 5, 16, 31, 31, 22, 12, 9, 10, 31, 56, 18, 37, 66, 21, 15, 85, 76, 52, 27, 55, 85, 118, 33, 23, 70, 15, 76, 131, 136, 42, 29, 30, 91, 172, 97, 148, 100, 88, 93, 57, 115, 175, 40, 121, 226, 43, 44, 45, 136, 231, 211, 142, 88, 22, 78, 157, 238, 71, 281
Offset: 2

Views

Author

Amarnath Murthy, Oct 26 2002

Keywords

Comments

a(n) = inverse of (prime(n)-prime(n-1)) mod prime(n). This is the least k such that prime(n)|k*((prime(n)-prime(n-1))-1). Since prime(n)|k*prime(n), it must divide (k*prime(n-1)+1), so k = a(n). Also, a(n) = prime(n) - (x*prime(n)+1)/prime(n-1) for the least such x. - David James Sycamore, Oct 05 2018

Examples

			a(4) = 3 as prime(5) = 11 divides 3*7 + 1, where 7 = prime(4).
		

Crossrefs

Cf. A069830.

Programs

  • Mathematica
    sk[a_,b_]:=Module[{k=1},While[!Divisible[k*a+1,b],k++];k]; sk@@@ Partition[ Prime[Range[70]],2,1] (* Harvey P. Dale, Jun 23 2013 *)
  • PARI
    a(n) = {my(k = 1, p = prime(n-1), q = prime(n)); while ((k*p+1) % q, k++); k;} \\ Michel Marcus, Aug 14 2018

Formula

a(n) = prime(n) - A069830(n - 1). - Emmanuel Vantieghem, Aug 12 2018 [Corrected by Georg Fischer, Sep 21 2024]

Extensions

More terms from Ralf Stephan, Oct 31 2002
More terms from Ray Chandler, Oct 24 2003