A077034 a(1)=3; a(2n), a(2n+1) are smallest integers > a(2n-1) such that a(2n-1)^2+a(2n)^2=a(2n+1)^2.
3, 4, 5, 12, 13, 84, 85, 132, 157, 12324, 12325, 15960, 20165, 26280, 33125, 79500, 86125, 95400, 128525, 152040, 199085, 477804, 517621, 871500, 1013629, 513721874820, 513721874821, 4351526469072, 4381745402885, 10516188966924, 11392538047501
Offset: 1
Keywords
Examples
a(1)=3 implies a(2)=4 and a(3)=5: 3^2+4^2=5^2. a(3)=5 implies a(4)=12 and a(5)=13: 5^2+12^2=13^2.
Extensions
More terms from Max Alekseyev, May 11 2011
Comments