cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077037 Largest prime < n^3.

Original entry on oeis.org

7, 23, 61, 113, 211, 337, 509, 727, 997, 1327, 1723, 2179, 2741, 3373, 4093, 4909, 5827, 6857, 7993, 9257, 10639, 12163, 13807, 15619, 17573, 19681, 21943, 24379, 26993, 29789, 32749, 35933, 39301, 42863, 46649, 50651, 54869, 59281, 63997
Offset: 2

Views

Author

Reinhard Zumkeller, Oct 21 2002

Keywords

Crossrefs

Programs

  • Mathematica
    PrimePrev[n_]:=Module[{k},k=n-1;While[ !PrimeQ[k],k-- ];k];f[n_]:=n^3;lst={};Do[AppendTo[lst,PrimePrev[f[n]]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 25 2010 *)
    Table[NextPrime[n^3, -1], {n, 2, 40}] (* Robert G. Wilson v, Aug 17 2010 *)
  • PARI
    a(n) = precprime(n^3); \\ Michel Marcus, Jan 14 2023
  • Python
    from sympy import prevprime
    def a(n):  return prevprime(n**3)
    print([a(n) for n in range(2, 41)]) # Michael S. Branicky, Jul 23 2021
    

Formula

a(n) > (n-1)^3 for all large n, by Ingham's theorem (see A060199). - Jonathan Sondow, Mar 27 2014