A077042
Square array read by falling antidiagonals of central polynomial coefficients: largest coefficient in expansion of (1 + x + x^2 + ... + x^(n-1))^k = ((1-x^n)/(1-x))^k, i.e., the coefficient of x^floor(k*(n-1)/2) and of x^ceiling(k*(n-1)/2); also number of compositions of floor(k*(n+1)/2) into exactly k positive integers each no more than n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 6, 7, 4, 1, 1, 0, 1, 10, 19, 12, 5, 1, 1, 0, 1, 20, 51, 44, 19, 6, 1, 1, 0, 1, 35, 141, 155, 85, 27, 7, 1, 1, 0, 1, 70, 393, 580, 381, 146, 37, 8, 1, 1, 0, 1, 126, 1107, 2128, 1751, 780, 231, 48, 9, 1, 1, 0, 1, 252, 3139
Offset: 0
Rows of square array start:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 6, 10, 20, ...
1, 1, 3, 7, 19, 51, 141, ...
1, 1, 4, 12, 44, 155, 580, ...
1, 1, 5, 19, 85, 381, 1751, ...
...
Read by antidiagonals:
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 2, 1, 1;
0, 1, 3, 3, 1, 1;
0, 1, 6, 7, 4, 1, 1;
...
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Denis Bouyssou, Thierry Marchant, Marc Pirlot, The size of the largest antichains in products of linear orders, arXiv:1903.07569 [math.CO], 2019.
- J. W. Sander, On maximal antihierarchic sets of integers, Discrete Mathematics, Volume 113, Issues 1-3, 5 April 1993, Pages 179-189.
- Index entries for sequences related to compositions
Rows include
A000007,
A000012,
A001405,
A002426,
A005190,
A005191,
A018901,
A025012,
A025013,
A025014,
A025015,
A201549,
A225779,
A201550. Columns include
A000012,
A000012,
A001477,
A077043,
A005900,
A077044,
A071816,
A133458.
-
t[n_, k_] := Max[ CoefficientList[ Series[ ((1-x^n) / (1-x))^k, {x, 0, k*(n-1)}], x]]; t[0, 0] = 1; t[0, ] = 0; Flatten[ Table[ t[n-k, k], {n, 0, 12}, {k, n, 0, -1}]] (* _Jean-François Alcover, Nov 04 2011 *)
-
T(n,k)=if(n<1 || k<1,k==0,vecmax(Vec(((1-x^n)/(1-x))^k)))
A277950
Triangle read by rows, in which row n gives coefficients in expansion of ((x^n - 1)/(x - 1))^5.
Original entry on oeis.org
1, 1, 5, 10, 10, 5, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1, 1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1
Offset: 1
Triangle starts:
1;
1, 5, 10, 10, 5, 1;
1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1;
1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1;
1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1;
-
Table[CoefficientList[Series[((x^n - 1)/(x - 1))^5, {x, 0, 5 n}], x], {n, 10}] // Flatten
-
row(n) = Vec(((1 - x^n)/(1 - x))^5); tabf(nn) = for (n=1, nn, print(row(n)));
A133458
The size of the largest antichain in the 7-dimensional hypercubic lattice of size n; also the coefficient of x^floor(7*(n-1)/2) in (1 + x + ... + x^(n-1))^7.
Original entry on oeis.org
1, 35, 393, 2128, 8135, 24017, 60691, 134512, 273127, 512365, 908755, 1528688, 2473325, 3852919, 5832765, 8582336, 12354469, 17395119, 24072133, 32726960, 43874139, 57971221, 75715487, 97702640, 124853275, 157924585, 198105727
Offset: 1
Leonid Chindelevitch (leonidus(AT)mit.edu), Dec 22 2007
-
[-25*(-1)^n/512 +2261*n^2/23040 +25/512 +5887*n^6/11520 -77*(-1)^n*n^4/1536 +847*n^4/4608 -91*(-1)^n*n^2/1536 : n in [1..40]]; // Vincenzo Librandi, Sep 07 2011
-
f:=(L,d)->(sum(x^k,k=0..L-1))^d; A:=[seq(coeff(f(j,7),x,floor(7*(j-1)/2)),j=1..25)];
A133458 := proc(n) -25/512*(-1)^n +2261/23040*n^2 -91/1536*(-1)^n*n^2 -77/1536*(-1)^n*n^4 +847/4608*n^4 +5887/11520*n^6 +25/512 ; end proc: # R. J. Mathar, Sep 05 2011
A175197
Array A(k,n) of the number of points of the A_k lattice with maximum infinity norm n, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 6, 2, 0, 1, 18, 12, 2, 0, 1, 50, 66, 18, 2, 0, 1, 140, 330, 146, 24, 2, 0, 1, 392, 1610, 1070, 258, 30, 2, 0, 1, 1106, 7742, 7580, 2500, 402, 36, 2, 0, 1, 3138, 37058, 52556, 23330, 4850, 578, 42, 2, 0, 1, 8952, 177186, 360402, 212436, 56252, 8350, 786
Offset: 0
A(k,n) starts in row k=0, column n=0 as:
1,....0,......0,.......0,........0,........0,.........0,.........0,.........0
1,....2,......2,.......2,........2,........2,.........2,.........2,.........2
1,....6,.....12,......18,.......24,.......30,........36,........42,........48
1,...18,.....66,.....146,......258,......402,.......578,.......786,......1026
1,...50,....330,....1070,.....2500,.....4850,......8350,.....13230,.....19720
1,..140,...1610,....7580,....23330,....56252,....115850,....213740,....363650
1,..392,...7742,...52556,...212436,...635628,...1564570,...3359440,...6521704
1,.1106,..37058,..360402,..1907458,..7071442,..20784834,..51910994,.114945026
1,.3138,.177186,.2455938,.16973970,.77854566,.273022686,.792717990,2001382932
Showing 1-4 of 4 results.
Comments