cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077246 Bisection (even part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

2, 13, 102, 803, 6322, 49773, 391862, 3085123, 24289122, 191227853, 1505533702, 11853041763, 93318800402, 734697361453, 5784260091222, 45539383368323, 358530806855362, 2822707071474573, 22223125764941222
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

3*a(n)^2 - 5*b(n)^2 = 7, with the companion sequence b(n)= A077245(n).
The odd part is A077244(n) with Diophantine companion A077243(n).

Examples

			13 = a(1) = sqrt((5*A077245(1)^2 + 7)/3) = sqrt((5*10^2 + 7)/3) = sqrt(169) = 13.
		

Programs

  • Mathematica
    LinearRecurrence[{8,-1},{2,13},30] (* Harvey P. Dale, Apr 30 2012 *)

Formula

a(n)= 8*a(n-1) - a(n-2), a(-1) := 3, a(0)=2.
a(n)= (T(n+1, 4)+2*T(n, 4))/3, with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 4)= A001091(n).
G.f.: (2-3*x)/(1-8*x+x^2).