A077246 Bisection (even part) of Chebyshev sequence with Diophantine property.
2, 13, 102, 803, 6322, 49773, 391862, 3085123, 24289122, 191227853, 1505533702, 11853041763, 93318800402, 734697361453, 5784260091222, 45539383368323, 358530806855362, 2822707071474573, 22223125764941222
Offset: 0
Examples
13 = a(1) = sqrt((5*A077245(1)^2 + 7)/3) = sqrt((5*10^2 + 7)/3) = sqrt(169) = 13.
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (8,-1).
Programs
-
Mathematica
LinearRecurrence[{8,-1},{2,13},30] (* Harvey P. Dale, Apr 30 2012 *)
Comments