A077248
Combined Diophantine Chebyshev sequences A077246 and A077244.
Original entry on oeis.org
2, 3, 13, 22, 102, 173, 803, 1362, 6322, 10723, 49773, 84422, 391862, 664653, 3085123, 5232802, 24289122, 41197763, 191227853, 324349302, 1505533702, 2553596653, 11853041763, 20104423922, 93318800402
Offset: 0
13 = a(2) = sqrt((5*A077247(2)^2 + 7)/3) = sqrt((5*10^2 + 7)/3)= sqrt(169) = 13.
-
CoefficientList[Series[(1 - x) (2 + x) (1 + 2 x)/(1 - 8 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2014 *)
A077244
Bisection (odd part) of Chebyshev sequence with Diophantine property.
Original entry on oeis.org
3, 22, 173, 1362, 10723, 84422, 664653, 5232802, 41197763, 324349302, 2553596653, 20104423922, 158281794723, 1246149933862, 9810917676173, 77241191475522, 608118614128003, 4787707721548502, 37693543158260013, 296760637544531602, 2336391557197992803
Offset: 0
22 = a(1) = sqrt((5*A077243(1)^2 + 7)/3) = sqrt((5*17^2 + 7)/3) = sqrt(484) = 22.
-
I:=[3,22]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2015
-
LinearRecurrence[{8, -1}, {3, 22}, 25] (* Vincenzo Librandi, Oct 12 2015 *)
-
Vec((3-2*x)/(1-8*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
A077243
Bisection (odd part) of Chebyshev sequence with Diophantine property.
Original entry on oeis.org
2, 17, 134, 1055, 8306, 65393, 514838, 4053311, 31911650, 251239889, 1978007462, 15572819807, 122604550994, 965263588145, 7599504154166, 59830769645183, 471046653007298, 3708542454413201, 29197292982298310
Offset: 0
5*a(1)^2 + 7 = 5*17^2+7 = 1452 = 3*22^2 = 3*A077244(1)^2.
A077245
Bisection (even part) of Chebyshev sequence with Diophantine property.
Original entry on oeis.org
1, 10, 79, 622, 4897, 38554, 303535, 2389726, 18814273, 148124458, 1166181391, 9181326670, 72284431969, 569094129082, 4480468600687, 35274654676414, 277716768810625, 2186459495808586, 17213959197658063
Offset: 0
5*a(1)^2 + 7 = 5*10^2 + 7 = 507 = 3*13^2 = 3*A077246(1)^2.
Showing 1-4 of 4 results.
Comments