cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077249 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

2, 21, 208, 2059, 20382, 201761, 1997228, 19770519, 195707962, 1937309101, 19177383048, 189836521379, 1879187830742, 18602041786041, 184141230029668, 1822810258510639, 18043961355076722, 178616803292256581, 1768124071567489088, 17502623912382634299
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-24*a(n)^2 + b(n)^2 = 25, with the companion sequence b(n) = A077250(n).
The even part is A077251(n) with Diophantine companion A077409(n).

Examples

			24*a(1)^2 + 25 = 24*21^2+25 = 10609 = 103^2 = A077250(1)^2.
		

Programs

  • Mathematica
    CoefficientList[Series[(z + 2)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
    LinearRecurrence[{10,-1},{2,21},40] (* Harvey P. Dale, Apr 08 2012 *)
  • PARI
    a(n)=if(n<0,0,subst(-7*poltchebi(n)+11*poltchebi(n+1),x,5)/24)
    
  • PARI
    a(n)=2*polchebyshev(n,2,5)+polchebyshev(n-1,2,5) \\ Charles R Greathouse IV, Jun 11 2011
    
  • PARI
    Vec((2+x)/(1-10*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015

Formula

a(n) = 10*a(n-1)- a(n-2), a(-1) := -1, a(0)=2.
a(n) = 2*S(n, 10)+S(n-1, 10), with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 10)= A004189(n+1).
G.f.: (2+x)/(1-10*x+x^2).