cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A082596 a(n) is the number of values of k such that A077389(k) = A060863(n).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Naohiro Nomoto, May 14 2003

Keywords

Crossrefs

A082592 A077389 sorted and duplicates removed.

Original entry on oeis.org

2, 4, 5, 9, 12, 17, 23, 29, 30, 31, 37, 38, 39, 49, 51, 52, 56, 70, 71, 79, 89, 95, 100, 105, 110, 111, 113, 124, 125, 133, 137, 139, 149, 151, 153, 155, 157, 169, 177, 179, 185, 187, 199, 200, 201, 214, 227, 230, 242, 251, 252, 261, 272, 273, 274, 275, 280, 281
Offset: 1

Views

Author

Naohiro Nomoto, May 13 2003

Keywords

Crossrefs

Cf. A060863.

A054892 Smallest prime a(n) such that the sum of n consecutive primes starting with a(n) is divisible by n.

Original entry on oeis.org

2, 3, 3, 5, 71, 5, 7, 17, 239, 13, 29, 5, 43, 23, 5, 5, 7, 7, 79, 17, 47, 11, 2, 73, 97, 53, 271, 13, 263, 23, 41, 61, 97, 101, 181, 41, 47, 13, 233, 13, 53, 13, 359, 151, 71, 61, 239, 73, 443, 859, 29, 131, 2, 61, 313, 101, 19, 151, 521, 3, 571, 31, 7, 79, 109, 97, 53
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

See A132809 for another version.
In some cases (n=1,2,25,..), like a(25)=97, the sum of 25 consecutive primes starts with the 25th prime and is divided by 25: Sum=97+...+227=3925=25*157

Examples

			a(8) = 17 since the sum of the 8 consecutive primes starting with 17 is 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 = 240, which is divisible by 8.  No prime less than 17 has this property: for example, 7 + 11 + ... + 31 = 150 which is not divisible by 8.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, t}, While[t = Table[Prime[i], {i, k, k + n - 1}]; Mod[Plus @@ t, n] > 0, k++ ]; t]; First /@ Table[f[n], {n, 67}] (* Ray Chandler, Oct 09 2006 *)
    Module[{prs=Prime[Range[250]]},Table[SelectFirst[Partition[prs,n,1],Mod[Total[#],n]==0&],{n,70}]][[;;,1]] (* Harvey P. Dale, Jul 11 2023 *)

Formula

a(n) = min{q_1 | Sum_{i=1..n} q_i = n*X}, q_i is a prime (rarely only a(n) = prime(n)).

A077388 Row sums of the triangle in A122820.

Original entry on oeis.org

2, 8, 15, 36, 395, 72, 119, 240, 2349, 300, 539, 276, 923, 714, 435, 496, 629, 702, 2375, 1120, 1995, 1144, 874, 3192, 3925, 2938, 9531, 1960, 10063, 2670, 3441, 4448, 5907, 6358, 9835, 4464, 5069, 3610, 13533, 4000, 6273, 4410, 21113, 12012, 8325
Offset: 1

Views

Author

Amarnath Murthy, Nov 06 2002

Keywords

Comments

19318176 = A077388(1296) = A077388(2088). Are there any other pairs?. - Naohiro Nomoto, May 17 2003

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, t},While[t = Table[Prime[i], {i, k, k + n - 1}]; Mod[Plus @@ t, n] > 0, k++ ];t];Total /@ Table[f[n], {n, 45}] (* Ray Chandler, Oct 09 2006 *)

Extensions

More terms from Sascha Kurz, Jan 30 2003
Name corrected by Sean A. Irvine, May 18 2025

A122820 Array read by rows in which n-th row contains n successive primes with least sum divisible by n.

Original entry on oeis.org

2, 3, 5, 3, 5, 7, 5, 7, 11, 13, 71, 73, 79, 83, 89, 5, 7, 11, 13, 17, 19, 7, 11, 13, 17, 19, 23, 29, 17, 19, 23, 29, 31, 37, 41, 43, 239, 241, 251, 257, 263, 269, 271, 277, 281, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 5, 7, 11, 13, 17
Offset: 1

Views

Author

Ray Chandler, Sep 27 2006

Keywords

Examples

			Triangle begins:
2
3 5
3 5 7
5 7 11 13
71 73 79 83 89
5 7 11 13 17 19
7 11 13 17 19 23 29
17 19 23 29 31 37 41 43
239 241 251 257 263 269 271 277 281
13 17 19 23 29 31 37 41 43 47
29 31 37 41 43 47 53 59 61 67 71
5 7 11 13 17 19 23 29 31 37 41 43
		

Crossrefs

Cf. A054892 (first term of each row), A077388 (row sum), A077389 (row average).

Programs

  • Mathematica
    f[n_] := Block[{k = 1, t},While[t = Table[Prime[i], {i, k, k + n - 1}]; Mod[Plus @@ t, n] > 0, k++ ];t];Flatten[Table[f[n], {n, 12}]]

A082653 For smallest numbers k such that A082596(k) = n, sequence gives A060863(k).

Original entry on oeis.org

2, 30, 910, 15203
Offset: 1

Views

Author

Naohiro Nomoto, May 17 2003

Keywords

Examples

			For n=2; smallest number k = 20, A082596(20) = 2. so a(2) = A060863(20) = 30.
		

Crossrefs

Showing 1-6 of 6 results.