A077419 Largest Whitney number of Fibonacci lattices J(Z_n).
1, 1, 1, 2, 2, 3, 5, 7, 11, 17, 26, 40, 63, 97, 153, 238, 376, 587, 931, 1458, 2317, 3640, 5794, 9124, 14545, 22951, 36631, 57904, 92512, 146461, 234205, 371281, 594169, 943045, 1510192, 2399460, 3844787, 6114555, 9802895, 15603339, 25027296
Offset: 0
Keywords
Links
- Emanuele Munarini, Mar 05 2007, Table of n, a(n) for n = 0..100
- Brian Kent, Sarah Racz, and Sanjit Shashi, Scrambling in quantum cellular automata, arXiv:2301.07722 [quant-ph], 2023.
- E. Munarini and N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
Programs
-
Maple
with(FormalPowerSeries): with(LREtools): # requires Maple 2022 gf:= (1 + 2*x + 2*x^4 - x^6 - (1-x^2)*sqrt(1 - 2*x^2 - x^4 - 2*x^6 + x^8))/(2*x*sqrt(1 - 2*x^2 - x^4 - 2*x^6 + x^8)); re:= FindRE(gf,x,a(n)); inits:= {seq(a(i-1)=[1,1,1,2,2,3,5,7,11,17,26,40,63,97, 153][i],i=1..14)}; rm:= (n+1)*a(n) +(n-2)*a(n-1) +2*(-n+1)*a(n-2) +2*(-n+1)*a(n-3) +(-n-3)*a(n-4) +(-n+8)*a(n-5) +2*(-n+6)*a(n-6) +2*(-n+7)*a(n-7) +(n-9)*a(n-8) +(n-10)*a(n-9)=0; minre:= MinimalRecurrence(re, a(n), inits); minrm:= MinimalRecurrence(rm, a(n), inits); # shows that Mathar's recurrence is equivalent f:= REtoproc(re,a(n),inits); seq(f(n),n=0..40); # Georg Fischer, Oct 22 2022
-
Mathematica
gf[x_] = (1 + 2 x + 2 x^4 - x^6 - (1 - x^2) Sqrt[1 - 2 x^2 - x^4 - 2 x^6 + x^8])/(2 x Sqrt[1 - 2 x^2 - x^4 - 2 x^6 + x^8]); Table[SeriesCoefficient[gf[x], {x, 0, n}], {n, 0, 40}] (* Hugo Pfoertner, Oct 22 2022 *)
Formula
G.f.: (1 + 2 x + 2 x^4 - x^6 - (1-x^2) sqrt(1 - 2 x^2 - x^4 - 2 x^6 + x^8) )/(2x sqrt(1 - 2 x^2 - x^4 - 2 x^6 + x^8)). - Emanuele Munarini, Mar 05 2007
a(n) ~ phi^(n+2) / (5^(1/4) * sqrt(2*Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 22 2017
D-finite with recurrence: (n+1)*a(n) +(n-2)*a(n-1) +2*(-n+1)*a(n-2) +2*(-n+1)*a(n-3) +(-n-3)*a(n-4) +(-n+8)*a(n-5) +2*(-n+6)*a(n-6) +2*(-n+7)*a(n-7) +(n-9)*a(n-8) +(n-10)*a(n-9)=0. - R. J. Mathar, Nov 19 2019
Extensions
More terms from Emanuele Munarini, Mar 05 2007
Comments