cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A200454 T(n,k)=Number of -k..k arrays x(0..n+1) of n+2 elements with zero sum and nonzero first and second differences.

Original entry on oeis.org

4, 10, 4, 26, 44, 6, 44, 142, 144, 10, 72, 342, 728, 486, 14, 102, 678, 2334, 3788, 1582, 22, 142, 1148, 5720, 16380, 19802, 5478, 34, 184, 1832, 12002, 50852, 115140, 103726, 18692, 52, 236, 2744, 22276, 127988, 451708, 820650, 548204, 64782, 80, 290, 3874
Offset: 1

Views

Author

R. H. Hardin Nov 18 2011

Keywords

Comments

Table starts
...4.....10.......26.........44..........72..........102...........142
...4.....44......142........342.........678.........1148..........1832
...6....144......728.......2334........5720........12002.........22276
..10....486.....3788......16380.......50852.......127988........278906
..14...1582....19802.....115140......451708......1375006.......3513884
..22...5478...103726.....820650.....4062384.....14923636......44716536
..34..18692...548204....5876818....36725772....163058296.....572857272
..52..64782..2916664...42324384...334032710...1791564880....7380022092
..80.223272.15576706..306098316..3050654456..19771609900...95496980144
.126.776430.83481240.2222013090.27965763262.219008350922.1240352594210

Examples

			Some solutions for n=4 k=3
..0....1...-1....1....1...-1....0....2...-3...-1...-1....0...-1...-1....3...-3
.-1...-3....2....3...-1....1...-1....0....3...-2....1...-2....3....3...-3....2
..3...-1...-1...-3....2...-1...-3...-1....1....0...-3....0....2....0...-2...-1
.-1....3....1...-1...-2....1....2...-3....2....1....0...-3...-2...-1....1....3
..1...-2...-3....2....1....2....0....0...-3....3....2....3....1...-3....0....0
.-2....2....2...-2...-1...-2....2....2....0...-1....1....2...-3....2....1...-1
		

Crossrefs

Column 1 is twice A077419(n+2)

A200057 T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum and elements alternately strictly increasing and strictly decreasing.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 10, 4, 1, 8, 22, 26, 6, 1, 10, 36, 78, 68, 10, 1, 12, 56, 172, 288, 178, 14, 1, 14, 78, 324, 840, 1098, 472, 22, 1, 16, 106, 546, 1948, 4172, 4224, 1276, 34, 1, 18, 136, 850, 3914, 11962, 20978, 16432, 3462, 52, 1, 20, 172, 1252, 7074, 28554, 74338
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Table starts
..1....1......1.......1........1........1.........1..........1..........1
..2....4......6.......8.......10.......12........14.........16.........18
..4...10.....22......36.......56.......78.......106........136........172
..4...26.....78.....172......324......546.......850.......1252.......1764
..6...68....288.....840.....1948.....3914......7074......11862......18732
.10..178...1098....4172....11962....28554.....59910.....114232.....202314
.14..472...4224...20978....74338...211242....514168....1115572....2215290
.22.1276..16432..106674...466548..1577878...4453946...10995240...24477966
.34.3462..64310..545698..2947742.11867186..38855488..109147062..272432422
.52.9496.253692.2811236.18746754.89815404.341052122.1090022120.3050199016

Examples

			Some solutions for n=7 k=6
..3....0...-2....1....0...-3....0....0...-3....0...-3...-3....3...-3....0...-6
.-1...-3...-6....0...-1....6....2....5...-6....5...-6....0...-3...-2...-4....3
..0....5....6....3....6...-3...-2...-5....4...-5....3...-1....3...-3....4...-2
.-4....2...-5...-4...-3...-2....1....6...-5....6...-3....4...-5....1...-6....5
..4....4....1...-1...-1...-4...-5...-3....5...-3....6...-1....4...-1....6....1
.-3...-6....0...-3...-6....6....4....1...-1....2...-3....3...-3....6...-5....3
..1...-2....6....4....5....0....0...-4....6...-5....6...-2....1....2....5...-4
		

Crossrefs

Column 1 is twice A077419 for n>1
Row 3 is twice A171769

A079487 Triangle read by rows giving Whitney numbers T(n,k) of Fibonacci lattices.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 3, 2, 1, 1, 3, 4, 5, 4, 3, 1, 1, 4, 6, 7, 7, 5, 3, 1, 1, 4, 7, 10, 11, 10, 7, 4, 1, 1, 5, 10, 14, 17, 16, 13, 8, 4, 1, 1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1, 1, 6, 15, 25, 35, 40, 39, 32, 22, 12, 5, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Comments

Row sums are Fibonacci numbers A000045. - Roger L. Bagula, Oct 07 2006
This is the second kind of Whitney numbers, which count elements, not to be confused with the first kind, which sum Mobius functions. - Thomas Zaslavsky, May 07 2008

Examples

			Triangle begins:
{1},
{1, 1},
{1, 1, 1},
{1, 2, 1, 1},
{1, 2, 2, 2, 1},
{1, 3, 3, 3, 2, 1},
{1, 3, 4, 5, 4, 3, 1},
{1, 4, 6, 7, 7, 5, 3, 1},
{1, 4, 7, 10, 11, 10, 7, 4, 1},
{1, 5, 10, 14, 17, 16, 13, 8, 4, 1},
{1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1}
		

Crossrefs

Largest element in each row gives A077419.

Programs

  • Mathematica
    p[0, x] = 1; p[1, x] = x + 1; p[k_, x_] := p[k, x] = Expand@ If[Mod[k, 2] == 1, x*p[k - 1, x] + p[k - 2, x], p[k - 1, x] + x^2*p[k - 2, x]]; Flatten[ Table[CoefficientList[p[n, x], x], {n, 0, 10}]] (* Roger L. Bagula, Oct 07 2006 *)
    T[ n_, k_] := (T[n, k] = Which[k<0 || k>n, 0, k==0, 1, True, T[n-1, k-Mod[n, 2]] + T[n-2, k-Mod[n+1, 2]*2]]); (* Michael Somos, Dec 12 2023 *)
  • PARI
    {T(n, k) = if(k<0 || k>n, 0, k==0, 1, T(n-1, k-(n%2)) + T(n-2, k-(n+1)%2*2))}; /* Michael Somos, Dec 12 2023 */

Formula

Define polynomials by: if k is odd then p(k, x) = x*p(k - 1, x) + p(k - 2, x); if k is even then: p(k, x) = p(k - 1, x) + x^2*p(k - 2, x). Triangle gives array of coefficients. - Roger L. Bagula, Oct 07 2006

Extensions

Mma program editing and a(67)-a(79) from Giovanni Resta, May 26 2015

A078807 Triangular array T given by T(n,k) = number of 01-words of length n having exactly k 1's, all runlengths odd and first letter 0.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 2, 1, 1, 3, 3, 3, 2, 1, 0, 0, 1, 3, 4, 5, 4, 3, 1, 1, 4, 6, 7, 7, 5, 3, 1, 0, 0, 1, 4, 7, 10, 11, 10, 7, 4, 1, 1, 5, 10, 14, 17, 16, 13, 8, 4, 1, 0, 0, 1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1, 1, 6, 15, 25, 35, 40, 39, 32, 22, 12, 5, 1, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 07 2002

Keywords

Comments

Row sums: 1,1,2,3,5,8,13,..., the Fibonacci numbers (A000045).

Examples

			T(6,2) counts the words 010001 and 000101. Top of triangle:
1 = T(1,0)
0 1 = T(2,0) T(2,1)
1 1 0
0 1 1 1
1 2 1 1 0
		

References

  • Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151.

Crossrefs

Formula

T(n, k)=T(n-1, n-k-1)+T(n-3, n-k-3)+...+T(n-2m-1, n-k-2m-1), where m=[(n-1)/2] and (by definition) T(i, j)=0 if i<0 or j<0 or i=j.

Extensions

Row 0 removed to stick to the triangle format by Andrey Zabolotskiy, Sep 22 2017

A123245 Triangle A079487 with reversed rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 3, 3, 3, 1, 1, 3, 4, 5, 4, 3, 1, 1, 3, 5, 7, 7, 6, 4, 1, 1, 4, 7, 10, 11, 10, 7, 4, 1, 1, 4, 8, 13, 16, 17, 14, 10, 5, 1, 1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1
Offset: 0

Views

Author

Roger L. Bagula, Oct 07 2006

Keywords

Comments

Row sums give Fibonacci numbers (A000045).

Examples

			{1},
{1, 1},
{1, 1, 1},
{1, 1, 2, 1},
{1, 2, 2, 2, 1},
{1, 2, 3, 3, 3, 1},
{1, 3, 4, 5, 4, 3, 1},
{1, 3, 5, 7, 7, 6, 4, 1},
{1, 4, 7, 10, 11, 10, 7, 4, 1},
{1, 4, 8, 13, 16, 17, 14, 10, 5, 1},
{1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1}
		

Crossrefs

Programs

  • Mathematica
    p[0, x] = 1; p[1, x] = x + 1;
    p[k_, x_] := p[k, x] = If[Mod[k, 2] == 0, x*p[k - 1, x] + p[k - 2, x], p[k - 1, x] + x^2*p[k - 2, x]];
    Table[CoefficientList[p[n, x], x], {n, 0, 10}] // Flatten

Formula

p(k, x) = x*p(k - 1, x) + p(k - 2, x) for k even, otherwise p(k, x) = p(k - 1, x) + x^2*p(k - 2, x).

Extensions

Edited by Joerg Arndt, May 26 2015
Offset corrected by Andrey Zabolotskiy, Sep 22 2017
Showing 1-5 of 5 results.