cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077422 Chebyshev sequence T(n,11) with Diophantine property.

Original entry on oeis.org

1, 11, 241, 5291, 116161, 2550251, 55989361, 1229215691, 26986755841, 592479412811, 13007560326001, 285573847759211, 6269617090376641, 137646002140526891, 3021942430001214961, 66345087457886202251, 1456569981643495234561, 31978194508699008958091
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

Numbers n such that 30*(n^2-1) is square. - Vincenzo Librandi, Aug 08 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 22xy + y^2 + 120 = 0. - Colin Barker, Feb 19 2014

Crossrefs

Cf. A090730.

Programs

  • Magma
    [n: n in [1..10000000] |IsSquare(30*(n^2-1))] // Vincenzo Librandi, Aug 08 2010
    
  • Mathematica
    Table[Cos[n*ArcCos[11]] // Round, {n, 0, 15}]  (* Jean-François Alcover, Dec 19 2013 *)
    LinearRecurrence[{22,-1},{1,11},20] (* Harvey P. Dale, Jul 30 2022 *)
  • PARI
    Vec((1-11*x)/(1-22*x+x^2) + O(x^100)) \\ Colin Barker, Jun 15 2015
  • Sage
    [lucas_number2(n,22,1)/2 for n in range(0,20)] # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n+1)^2 - 30*(2*b(n))^2 = 1, n>=0, with the companion sequence b(n)=A077421(n).
a(n) = 22*a(n-1) - a(n-2), a(-1) := 11, a(0)=1.
a(n) = T(n, 11) = (S(n, 22)-S(n-2, 22))/2 = S(n, 22)-11*S(n-1, 22) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 22)=A077421(n).
a(n) = (ap^n + am^n)/2 with ap := 11+2*sqrt(30) and am := 11-2*sqrt(30).
a(n) = sum(((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*11)^(n-2*k), k=0..floor(n/2)), n>=1.
a(n+1) = sqrt(1 + 30*(2*A077421(n))^2), n>=0.
a(n) = Cosh[2n*ArcSinh[Sqrt[5]]] - Herbert Kociemba, Apr 24 2008
G.f.: (1-11*x)/(1-22*x+x^2). - Philippe Deléham, Nov 17 2008