A077439 Numbers k such that k and k^2 have square decimal digits.
0, 1, 10, 100, 1000, 1049, 10000, 10490, 100000, 100499, 104900, 1000000, 1004990, 1049000, 10000000, 10004999, 10049900, 10490000, 100000000, 100049990, 100499000, 104900000, 1000000000, 1000049999, 1000499900, 1004990000, 1044049999, 1049000000, 10000000000, 10000499990, 10004999000, 10049900000, 10440499990
Offset: 1
Examples
1049^2 = 1100401, therefore 1049 is a term. A046030(7)=14 is not a term, as 14^2=196 and 6 is not a square digit. 104900499999000^2 = 11004114900040199000001000000.
Links
- David A. Corneth, Table of n, a(n) for n = 1..466 (first 68 terms from Jonathan Wellons)
- David A. Corneth, PARI program
- David A. Corneth, pixelart from first 466 terms in b-file
- Jonathan Wellons, Tables of Shared Digits [archived].
Programs
-
Maple
M:= 15: # for terms of up to M digits f:= proc(n,d) n >= 10^(d-1) and convert(convert(n^2,base,10),set) subset {0,1,4,9} end proc: g:= proc(n,d) convert(convert(n^2 mod 10^d,base,10),set) subset {0,1,4,9} end proc: R:= 0, 1: C:= [0,1,9]: for d from 2 to M do C:= select(g,map(t -> (t, t+10^(d-1), t+4*10^(d-1), t+9*10^(d-1)), C),d); V:= select(f, C,d); R:= R, op(V); od: sort([R]); # Robert Israel, Dec 18 2023
-
Mathematica
a = {}; Do[d = FromDigits[ ReplaceAll[ IntegerDigits[n, 4], {3 -> 9, 2 -> 4}]]; If[ Union[ Join[ IntegerDigits[d^2], {0, 1, 4, 9}]] == {0, 1, 4, 9}, a = Append[a, d]], {n, 0, 3*10^5}]; a With[{c={0,1,4,9}},Select[FromDigits/@Tuples[c,11],SubsetQ[c, IntegerDigits[ #^2]]&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 15 2017 *)
-
PARI
See PARI link
-
Python
from itertools import count, islice def A077429_gen(): # generator of terms for m in count(0): s = bin(m)[2:] if len(s)&1: s='0'+s n = int(''.join({'00':'0','01':'1','10':'4','11':'9'}[s[i:i+2]] for i in range(0,len(s),2))) if set(str(n**2)) <= {'0','1','4','9'}: yield n A077429_list = list(islice(A077429_gen(),20)) # Chai Wah Wu, Dec 19 2023
Extensions
Edited by Robert G. Wilson v, Nov 08 2002
More terms from Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008
Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar
Comments